Isothermal decomposition of δ-ferrite in a 25Cr–7Ni–0.14N stainless steel

[1]  Y. Ohmori,et al.  Decomposition processes of δ-ferrite during continuous heating in a 25Cr-7Ni-0.14N stainless steel , 2000 .

[2]  A. Wilson,et al.  Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex stainless steel , 2000 .

[3]  J. Cui,et al.  Effect of R Phase Formation on the Impact Toughness of a 25%Cr-7%Ni-3%Mo Duplex Stainless Steel , 1999 .

[4]  V. S. Raghunathan,et al.  Electron microscopic study of cr2n formation in thermally aged 316ln austenitic stainless steels , 1996 .

[5]  N. Sano,et al.  Initial Stage of Cu Precipitation in Cu-Added Ultra-low Carbon Steel , 1996 .

[6]  Y. Ohmori,et al.  Mechanism of Widmanstätten Austenite Formation in a δ/γ Duplex Phase Stainless Steel , 1995 .

[7]  G. Smith,et al.  High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe , 1994 .

[8]  A. Wilson,et al.  Influence of isothermal phase transformations on toughness and pitting corrosion of super duplex stainless steel SAF 2507 , 1993 .

[9]  H. Okuda,et al.  Small-Angle Neutron Scattering Study of Phase Decomposition in Fe–Cu Binary Alloy , 1993 .

[10]  G. Smith,et al.  Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe—Cu and Fe—Cu—Ni , 1991 .

[11]  J. Nilsson,et al.  Aging at 400–600°C of submerged arc welds of 22Cr–3Mo–8Ni duplex stainless steel and its effect on toughness and microstructure , 1991 .

[12]  R. Honeycombe,et al.  Microstructural refinement of duplex stainless steels , 1991 .

[13]  K. Roberts,et al.  A fluorescence EXAFS study of the structure of copper-rich precipitates in Fe–Cu and Fe–Cu–Ni alloys , 1990 .

[14]  G. Valdrè,et al.  Study by TEM, EDS, EELS and electron diffraction of precipitation reactions in a Cr-Mn austenitic steel with and without He-implantation , 1988 .

[15]  M. Grujicic,et al.  Nitrogen strengthening of a stable austenitic stainless steel , 1987 .

[16]  K. Ameyama,et al.  Morphology and Crystallography of the Precipitation of Austenite at Ferrite Grain Boundaries in Two-Phase Stainless Steel , 1986 .

[17]  K. Ameyama,et al.  Morphology and Crystallographic Feature of Intragranular γ Phase in (α+γ) Two Phase Stainless Steel , 1986 .

[18]  正志 牧,et al.  (α+γ)2相ステンレス鋼における微細2相組織の形成過程 , 1985 .

[19]  Jan-Olof Andersson,et al.  The Thermo-Calc databank system☆ , 1985 .

[20]  K. H. Westmacott,et al.  The origin of Mo2C precipitate morphology in molybdenum , 1983 .

[21]  U. Dahmen Orientation relationships in precipitation systems , 1982 .

[22]  M. Kikuchi,et al.  Formation and Composition of π-phase Nitride in a High Chromium-high Nickel Austenitic Steel Containing 0.4% Nitrogen , 1981 .

[23]  M. Kikuchi,et al.  Matrix precipitation of Cr2N in a phosphorus-containing austenitic stainless steel , 1978 .

[24]  M. Kikuchi,et al.  Electron Microscopic Observation of Cr 2 N Precipitated in 25%Cr-28%Ni-2%Mo Austenitic Steels Containing Nitrogen , 1977 .

[25]  M. Kikuchi,et al.  The Microstructure During High Temperature Aging of 25%Cr-28%Ni Austenitic Steels Containing Both Molybdenum and Nitrogen , 1975 .

[26]  D. Dyson,et al.  The Precipitation of Cr2N in 17%Cr Steels , 1975 .

[27]  S. R. Goodman,et al.  An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part I: Field-ion microscopy , 1973 .

[28]  S. R. Goodman,et al.  An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part II: Atom probe analyses , 1973 .

[29]  R. Tanaka,et al.  The Effect of Mo, N, and C on High Temperature Properties of 25%Cr-28%Ni Heat Resisting Steels , 1970 .

[30]  S. Keown,et al.  The orientation relationship and growth direction of Mo2C in ferrite , 1966 .

[31]  Y. Imai Influences of Nitrogen on Some Properties of Iron and Steel , 1965 .

[32]  W. Pitsch,et al.  Die Ausscheidungsform des ε-Karbids im Ferrit und im Martensit beim Anlassen , 1958 .