暂无分享,去创建一个
Zhenyu Wen | Myungjin Lee | Pramod Bhatotia | Do Le Quoc | Ruichuan Chen | Myungjin Lee | Pramod Bhatotia | D. Quoc | Ruichuan Chen | Z. Wen
[1] Pramod Bhatotia,et al. Large-scale Incremental Data Processing with Change Propagation , 2011, HotCloud.
[2] Pramod Bhatotia,et al. Incoop: MapReduce for incremental computations , 2011, SoCC.
[3] Rajeev Rastogi,et al. Processing complex aggregate queries over data streams , 2002, SIGMOD '02.
[4] Akshat Verma,et al. Shredder: GPU-accelerated incremental storage and computation , 2012, FAST.
[5] Onur Mutlu,et al. Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds , 2017, NSDI.
[6] Pramod Bhatotia,et al. iThreads: A Threading Library for Parallel Incremental Computation , 2015, ASPLOS.
[7] Swaminathan Natarajan. Imprecise and Approximate Computation , 1995 .
[8] Christof Fetzer,et al. IncApprox: A Data Analytics System for Incremental Approximate Computing , 2016, WWW.
[9] Pramod Bhatotia,et al. Incremental parallel and distributed systems , 2015 .
[10] T. V. Lakshman,et al. Bringing the cloud to the edge , 2014, 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).
[11] Feng Gao,et al. CityBench: A Configurable Benchmark to Evaluate RSP Engines Using Smart City Datasets , 2015, SEMWEB.
[12] R. Rodrigues,et al. Conductor: orchestrating the clouds , 2010, LADIS '10.
[13] Chris Jermaine,et al. Scalable approximate query processing with the DBO engine , 2007, SIGMOD '07.
[14] Christof Fetzer,et al. PrivApprox: Privacy-Preserving Stream Analytics , 2019, Informatik Spektrum.
[15] Tilmann Rabl,et al. Optimized on-demand data streaming from sensor nodes , 2017, SoCC.
[16] Umut A. Acar,et al. Slider : Incremental Sliding-Window Computations for Large-Scale Data Analysis , 2012 .
[17] Byung Suk Lee,et al. Stratified Reservoir Sampling over Heterogeneous Data Streams , 2010, SSDBM.
[18] F. Pukelsheim. The Three Sigma Rule , 1994 .
[19] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[20] Christof Fetzer,et al. Approximate Distributed Joins in Apache Spark , 2018, ArXiv.
[21] Margarida Mamede,et al. PIXIDA: Optimizing Data Parallel Jobs in Wide-Area Data Analytics , 2015, Proc. VLDB Endow..
[22] Pramod Bhatotia,et al. Brief announcement: modelling MapReduce for optimal execution in the cloud , 2010, PODC.
[23] Holger Ziekow,et al. The DEBS 2015 grand challenge , 2015, DEBS.
[24] Sharon L. Lohr,et al. Sampling: Design and Analysis , 1999 .
[25] Pramod Bhatotia,et al. Slider: incremental sliding window analytics , 2014, Middleware.
[26] Mahadev Satyanarayanan,et al. The Emergence of Edge Computing , 2017, Computer.
[27] Christof Fetzer,et al. Approximate Stream Analytics in Apache Flink and Apache Spark Streaming , 2017, ArXiv.
[28] Christof Fetzer,et al. StreamApprox: approximate computing for stream analytics , 2017, Middleware.
[29] Pramod Bhatotia,et al. Orchestrating the Deployment of Computations in the Cloud with Conductor , 2012, NSDI.
[30] Aditya Akella,et al. CLARINET: WAN-Aware Optimization for Analytics Queries , 2016, OSDI.
[31] Jeffrey Scott Vitter,et al. Random sampling with a reservoir , 1985, TOMS.
[32] Srikanth Kandula,et al. Quickr: Lazily Approximating Complex AdHoc Queries in BigData Clusters , 2016, SIGMOD Conference.
[33] Ion Stoica,et al. BlinkDB: queries with bounded errors and bounded response times on very large data , 2012, EuroSys '13.
[34] Marios D. Dikaiakos,et al. AdaM: An adaptive monitoring framework for sampling and filtering on IoT devices , 2015, 2015 IEEE International Conference on Big Data (Big Data).
[35] Christof Fetzer,et al. Privacy Preserving Stream Analytics: The Marriage of Randomized Response and Approximate Computing , 2017, ArXiv.
[36] Teruo Higashino,et al. Edge-centric Computing: Vision and Challenges , 2015, CCRV.
[37] Thu D. Nguyen,et al. ApproxHadoop: Bringing Approximations to MapReduce Frameworks , 2015, ASPLOS.