Matchings Meeting Quotas and Their Impact on the Blow-Up Lemma
暂无分享,去创建一个
[1] János Komlós,et al. Blow-up Lemma , 1997, Combinatorics, Probability and Computing.
[2] Paul Erdös,et al. On a Combinatorial Game , 1973, J. Comb. Theory A.
[3] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[4] C. V. Eynden,et al. A proof of a conjecture of Erdös , 1969 .
[5] Joel H. Spencer,et al. Edge disjoint placement of graphs , 1978, J. Comb. Theory B.
[6] Gábor N. Sárközy,et al. An algorithmic version of the blow-up lemma , 1998 .
[7] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[8] János Komlós,et al. Proof of the Alon-Yuster conjecture , 2001, Discret. Math..
[9] János Komlós,et al. On the Pósa-Seymour conjecture , 1998, J. Graph Theory.
[10] János Komlós,et al. An algorithmic version of the blow-up lemma , 1998, Random Struct. Algorithms.
[11] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[12] Vojtech Rödl,et al. Perfect Matchings in ε-Regular Graphs and the Blow-Up Lemma , 1999, Comb..
[13] Vojtech Rödl,et al. The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.
[14] Vojtech Rödl,et al. Perfect Matchings in ε-regular Graphs , 1998, Electron. J. Comb..
[15] Svante Janson,et al. Random graphs , 2000, ZOR Methods Model. Oper. Res..
[16] Endre Szemerédi,et al. Proof of the Seymour conjecture for large graphs , 1998 .