Matchings Meeting Quotas and Their Impact on the Blow-Up Lemma

A bipartite graph G = (U,V;E) is called $\epsilon$-regular if the edge density of every sufficiently large induced subgraph differs from the edge density of G by no more than $\epsilon$. If, in addition, the degree of each vertex in G is between $(d-\epsilon)n$ and $(d+\epsilon)n$, where d is the edge density of G and |U|=|V|=n, then G is called super $(d,\epsilon)$-regular. In [Combinatorica, 19 (1999), pp. 437--452] it was shown that if $S \subset U$ and $T \subset V$ are subsets of vertices in a super-regular bipartite graph G = (U,V;E), and if a perfect matching M of G is chosen randomly, then the number of edges of M that go between the sets S and T is roughly |S||T|/n. In this paper, we derandomize this result using the Erdos--Selfridge method of conditional probabilities. As an application, we give an alternative constructive proof of the blow-up lemma of $\komlos$, $\sarkozy$, and $\szemeredi$ (see [Combinatorica, 17 (1997), pp. 109--123] and [Random Structures Algorithms, 12 (1998), pp. 297--312]).

[1]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[2]  Paul Erdös,et al.  On a Combinatorial Game , 1973, J. Comb. Theory A.

[3]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[4]  C. V. Eynden,et al.  A proof of a conjecture of Erdös , 1969 .

[5]  Joel H. Spencer,et al.  Edge disjoint placement of graphs , 1978, J. Comb. Theory B.

[6]  Gábor N. Sárközy,et al.  An algorithmic version of the blow-up lemma , 1998 .

[7]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[8]  János Komlós,et al.  Proof of the Alon-Yuster conjecture , 2001, Discret. Math..

[9]  János Komlós,et al.  On the Pósa-Seymour conjecture , 1998, J. Graph Theory.

[10]  János Komlós,et al.  An algorithmic version of the blow-up lemma , 1998, Random Struct. Algorithms.

[11]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[12]  Vojtech Rödl,et al.  Perfect Matchings in ε-Regular Graphs and the Blow-Up Lemma , 1999, Comb..

[13]  Vojtech Rödl,et al.  The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.

[14]  Vojtech Rödl,et al.  Perfect Matchings in ε-regular Graphs , 1998, Electron. J. Comb..

[15]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[16]  Endre Szemerédi,et al.  Proof of the Seymour conjecture for large graphs , 1998 .