Computing shortest paths among curved obstacles in the plane

In this paper, we study the problem of finding Euclidean shortest paths among curved obstacles in the plane. We model curved obstacles as splinegons. A splinegon can be viewed as replacing each edge of a polygon by a convex curved edge, and each curved edge is assumed to be of O(1) complexity. Given in the plane two points s and t and a set of h pairwise disjoint splinegons with a total of n vertices, we present an algorithm that can compute a shortest path from s to t avoiding the splinegons in O(n+hlogεh+k) time for any ε>0, where k is a parameter sensitive to the input splinegons and k=O(h2). If all splinegons are convex, a common tangent of two splinegons is "free" if it does not intersect the interior of any splingegon; our techniques yield an output sensitive algorithm for computing all free common tangents of the h splinegons in O(n+hlogh+k) time and O(n) working space, where k is the number of all free common tangents.

[1]  Sanjiv Kapoor,et al.  Planar rectilinear shortest path computation using corridors , 2009, Comput. Geom..

[2]  David M. Mount,et al.  An Output Sensitive Algorithm for Computing Visibility Graphs , 1987, FOCS.

[3]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[4]  David G. Kirkpatrick,et al.  A compact piecewise-linear voronoi diagram for convex sites in the plane , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[5]  Deok-Soo Kim,et al.  Shortest Paths for Disc Obstacles , 2004, ICCSA.

[6]  Kurt Mehlhorn,et al.  Sorting Jordan Sequences in Linear Time Using Level-Linked Search Trees , 1986, Inf. Control..

[7]  David P. Dobkin,et al.  Computational geometry in a curved world , 1990, Algorithmica.

[8]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[9]  Haitao Wang,et al.  Computing Shortest Paths among Curved Obstacles in the Plane , 2015, TALG.

[10]  Ee-Chien Chang,et al.  Shortest path amidst disc obstacles is computable , 2005, Int. J. Comput. Geom. Appl..

[11]  Leonidas J. Guibas,et al.  Visibility of disjoint polygons , 2005, Algorithmica.

[12]  L. Paul Chew,et al.  Planning the shortest path for a disc in O(n2log n) time , 1985, SCG '85.

[13]  Reuven Bar-Yehuda,et al.  Triangulating disjoint Jordan chains , 1994, Int. J. Comput. Geom. Appl..

[14]  Michel Pocchiola,et al.  Topologically sweeping visibility complexes via pseudotriangulations , 1996, Discret. Comput. Geom..

[15]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[16]  Mark H. Overmars,et al.  New methods for computing visibility graphs , 1988, SCG '88.

[17]  Subhash Suri,et al.  A near-optimal algorithm for shortest paths among curved obstacles in the plane , 2013, SoCG '13.

[18]  Leonidas J. Guibas,et al.  Topologically sweeping an arrangement , 1986, STOC '86.

[19]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[20]  Leonidas J. Guibas,et al.  Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.

[21]  Haitao Wang,et al.  Computing shortest paths amid pseudodisks , 2011, SODA '11.

[22]  Hans Rohnert,et al.  Shortest Paths in the Plane with Convex Polygonal Obstacles , 1986, Inf. Process. Lett..

[23]  Joseph S. B. Mitchell,et al.  An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles in the Plane , 1997, Discret. Comput. Geom..

[24]  Haitao Wang,et al.  Computing the Visibility Polygon of an Island in a Polygonal Domain , 2012, ICALP.

[25]  Emo WELZL,et al.  Constructing the Visibility Graph for n-Line Segments in O(n²) Time , 1985, Inf. Process. Lett..

[26]  John Hershberger,et al.  Computing Shortest Paths amid Convex Pseudodisks , 2013, SIAM J. Comput..

[27]  Elefterios A. Melissaratos,et al.  Shortest Paths Help Solve Geometric Optimization Problems in Planar Regions , 1992, SIAM J. Comput..

[28]  David M. Mount,et al.  An output sensitive algorithm for computing visibility graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[29]  Haitao Wang,et al.  Two-Point L1 Shortest Path Queries in the Plane , 2014, J. Comput. Geom..

[30]  S. N. Maheshwari,et al.  A near optimal algorithm for finding Euclidean shortest path in polygonal domain , 2010, ArXiv.

[31]  David P. Dobkin,et al.  Decomposition and intersection of simple splinegons , 1988, Algorithmica.

[32]  Haitao Wang,et al.  A Nearly Optimal Algorithm for Finding L 1 Shortest Paths among Polygonal Obstacles in the Plane , 2011, ESA.

[33]  Haitao Wang,et al.  L_1 Shortest Path Queries among Polygonal Obstacles in the Plane , 2013, STACS.

[34]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[35]  S. N. Maheshwari,et al.  Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles , 1988, SCG '88.

[36]  Haitao Wang,et al.  Visibility and ray shooting queries in polygonal domains , 2015, Comput. Geom..

[37]  Joseph S. B. Mitchell,et al.  Shortest paths among obstacles in the plane , 1993, SCG '93.

[38]  Leonidas J. Guibas,et al.  An O(n²) Shortest Path Algorithm for a Non-Rotating Convex Body , 1988, J. Algorithms.

[39]  Michel Pocchiola,et al.  Computing the visibility graph via pseudo-triangulations , 1995, SCG '95.

[40]  David G. Kirkpatrick,et al.  Tentative Prune-and-Search for Computing Fixed-Points with Applications to Geometric Computation , 1995, Fundam. Informaticae.

[41]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[42]  James A. Storer,et al.  Shortest paths in the plane with polygonal obstacles , 1994, JACM.