Photodissociation dynamics of 1-propanol and 2-propanol at 193.3 nm

193.3-nm photodissociation dynamics of jet-cooled 1-propanol and 2-propanol and their partially deuterated variants are examined by using the high-n Rydberg-atom time-of-flight technique. Isotope labeling studies show that O–H bond fission is the primary H-atom production channel in the ultraviolet photodissociation of both 1-propanol and 2-propanol. Center-of-mass (c.m.) product translational energy release of the RO–H dissociation channel is large, with 〈fT〉=0.78 for H+1-propoxy (n-propoxy) and 0.79 for H+2-propoxy (isoproxy). Maximum c.m. translational energy release yields an upper limit of the O–H bond dissociation energy: 433±2 kJ/mol in 1-propanol and 435±2 kJ/mol in 2-propanol. H-atom product angular distribution is anisotropic (with β≈−0.79 for 1-propanol and −0.77 for 2-propanol), suggesting an electronic transition moment perpendicular to the H–O–C plane and a short excited-state dissociation lifetime (less than a rotational period). Information about photodissociation dynamics and bond energie...

[1]  C. Carter,et al.  Rotationally resolved B-X electronic spectra of both conformers of the 1-propoxy radical , 2003 .

[2]  B. Viskolcz,et al.  Competition between alkyl radical addition to carbonyl bonds and H-atom abstraction reactions , 2002 .

[3]  O. Setokuchi,et al.  Direct dynamics of an alkoxy radical (CH3O, C2H5O, and i-C3H7O) reaction with an oxygen molecule , 2002 .

[4]  Vincent F. DeTuri,et al.  Anchoring the Gas-Phase Acidity Scale† , 2002 .

[5]  M. Mandado,et al.  On the effects of electron correlation and conformational changes on the distortion of the charge distribution in alkyl chains , 2002 .

[6]  Hongyan Sun,et al.  Structures, Rotational Barriers, Thermochemical Properties, and Additivity Groups for 2-Propanol, 2-Chloro-2-propanol and the Corresponding Alkoxy and Hydroxyalkyl Radicals , 2002 .

[7]  Jingsong Zhang,et al.  H + NO2 Channels in the Photodissociation of HONO at 193.3 nm† , 2001 .

[8]  W. C. Lineberger,et al.  Vibronic structure of alkoxy radicals via photoelectron spectroscopy , 2000 .

[9]  R. Zellner,et al.  Theoretical studies of unimolecular reactions of C2–C5 alkoxy radicals. Part I. Ab initio molecular orbital calculations , 2000 .

[10]  Kesheng Xu,et al.  Photodissociation dynamics of ethanol at 193.3 nm: The H-atom channel and ethoxy vibrational distribution , 1999 .

[11]  A. Rauk,et al.  Gas Phase Free Energies of Formation and Free Energies of Solution ofαC-Centered Free Radicals from Alcohols: A Quantum Mechanical-Monte Carlo Study , 1999 .

[12]  Kesheng Xu,et al.  ULTRAVIOLET PHOTODISSOCIATION DYNAMICS OF HN3 : THE H + N3 CHANNEL , 1999 .

[13]  R. Osman,et al.  Theoretical Studies of Hydrogen Abstraction from 2-Propanol by OH Radical , 1997 .

[14]  M. Johnston,et al.  Ultraviolet Photodissociation of Gas-Phase Alcohols, Amines, and Nitroalkanes , 1996 .

[15]  Jingsong Zhang,et al.  HNCO + h.nu.(193.3 nm) .fwdarw. H + NCO: Center-of-Mass Translational Energy Distribution, Reaction Dynamics, and D0(H-NCO) , 1995 .

[16]  M. Dulligan,et al.  Photodissociation of methanol at 193.3 nm: Translational energy release spectra , 1994 .

[17]  Yun-Dong Wu,et al.  Conformational preferences of the O-C-C-C unit in acyclic and cyclic systems. The exo-deoxoanomeric effect and related phenomena , 1993 .

[18]  C. Marston,et al.  Product selectivity of vibrationally mediated photofragmentation of methanol , 1993 .

[19]  M. Ashfold,et al.  Photofragment translational spectroscopy , 1992 .

[20]  D. Schiel,et al.  The OD stretching vibrational Raman profile of 1-propanol (OD) in the gas phase , 1992 .

[21]  P. Mayer,et al.  Heats of formation of oxygen-containing organic free radicals from appearance energy measurements , 1991 .

[22]  J. Brum,et al.  SITE-SPECIFIC BOND CLEAVAGE LEADING TO HYDROGEN ATOM PRODUCTION IN THE PHOTOLYSIS OF 2-IODOPROPANE , 1991 .

[23]  H. S. Gutowsky,et al.  Relaxation of conformers and isomers in seeded supersonic jets of inert gases , 1990 .

[24]  M. Ashfold,et al.  Photodissociation dynamics of H2S at 121.6 nm and a determination of the potential energy function of SH(A 2Σ , 1990 .

[25]  Jeunghee Park,et al.  Dissociation of methanol and ethanol activated by a chemical reaction or by light , 1989 .

[26]  S. Satyapal,et al.  Isotope effect in the photodissociation of HDO at 157.5 nm , 1989 .

[27]  Y. Hsu,et al.  Implications of the rotationally resolved spectra of the alkoxy radicals for their electronic structure , 1986 .

[28]  G. L. Findley,et al.  Photophysics and Photochemistry in the Vacuum Ultraviolet , 1985 .

[29]  R. Buenker,et al.  Photolysis of methanol at 185 nm: quantum mechanical calculations and product study , 1984 .

[30]  J. Gleghorn,et al.  Theoretical aspects of the photochemistry of methanol, methylamine, and related materials , 1983, Journal of the American Chemical Society.

[31]  D. Golden,et al.  Hydrocarbon Bond Dissociation Energies , 1983 .

[32]  Melvin B. Robin,et al.  Higher excited states of polyatomic molecules , 1974 .

[33]  C. Sonntag Strahlenchemie von alkoholen—I: Die wasserstoffbildung bei der uv-protolyse deuterierter isopropanole , 1968 .