Monitoring and retuning of low-level PID control loops

Abstract In this work, we focus on the problem of monitoring and retuning of low-level proportional-integral-derivative (PID) control loops used to regulate control actuators to the values computed by advanced model-based control systems like model predictive control (MPC). We consider the case where the real-time measurement of the actuation level is unavailable, and thus PID controller monitoring has to be achieved on the basis of process state measurements. A fault detection and isolation (FDI) method involving process models and real-time process measurements is used to monitor the PID control loops and compute appropriate residuals. Once poor tuning is detected and isolated, a PID tuning method based on the estimated transfer function of the control actuator is applied to the isolated, poorly functioning PID controller. An example of a non-linear reactor–separator process operating under MPC with low-level PID controllers regulating the control actuators is used to demonstrate the approach.

[1]  Tore Hägglund,et al.  Automatic Tuning and Adaptation for PID Controllers - A Survey , 1992 .

[2]  In-Beum Lee,et al.  On-line process identification and automatic tuning method for PID controllers , 1998 .

[3]  D. P. Atherton,et al.  Automatic tuning of optimum PID controllers , 1993 .

[4]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[5]  Panagiotis D. Christofides,et al.  Integrated fault-detection and fault-tolerant control of process systems , 2006 .

[6]  Fugee Tsung,et al.  Statistical monitoring and diagnosis of automatic controlled processes using dynamic PCA , 2000 .

[7]  C. Hang,et al.  Refinements of the Ziegler-Nichols tuning formula , 1991 .

[8]  Masayoshi Tomizuka,et al.  Fuzzy gain scheduling of PID controllers , 1993, IEEE Trans. Syst. Man Cybern..

[9]  Antonio Visioli,et al.  Performance Assessment and Retuning of PID Controllers , 2009 .

[10]  James M. Lucas,et al.  Exponentially weighted moving average control schemes with variable sampling intervals , 1992 .

[11]  Panagiotis D. Christofides,et al.  Control of Nonlinear and Hybrid Process Systems: Designs for Uncertainty, Constraints and Time-Delays , 2005 .

[12]  Wilson J. Rugh,et al.  Analytical Framework for Gain Scheduling , 1990, 1990 American Control Conference.

[13]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[14]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[15]  Yoshikazu Nishikawa,et al.  A method for auto-tuning of PID control parameters , 1981, Autom..

[16]  P.-G. Eriksson,et al.  Some aspects of control loop performance monitoring , 1994, 1994 Proceedings of IEEE International Conference on Control and Applications.

[17]  Panagiotis D. Christofides,et al.  Distributed model predictive control of nonlinear process systems , 2009 .

[18]  Panagiotis D. Christofides,et al.  Detection, isolation and handling of actuator faults in distributed model predictive control systems , 2010 .

[19]  Panagiotis D. Christofides,et al.  Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control , 2005, Proceedings of the 2005, American Control Conference, 2005..

[20]  Panagiotis D. Christofides,et al.  Isolation and handling of actuator faults in nonlinear systems , 2008, at - Automatisierungstechnik.

[21]  Karl Johan Åström,et al.  Guaranteed dominant pole placement with PID controllers , 2009 .

[22]  Sigurd Skogestad,et al.  Simple analytic rules for model reduction and PID controller tuning , 2003 .

[23]  Panagiotis D. Christofides,et al.  Sequential and Iterative Architectures for Distributed Model Predictive Control of Nonlinear Process Systems , 2010 .

[24]  T. Harris Assessment of Control Loop Performance , 1989 .

[25]  Ahmad Lotfi,et al.  Novel Fuzzy Logic Controllers with Self-Tuning Capability , 2008, J. Comput..

[26]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[27]  Dongfeng Shi,et al.  Modelling and diagnosis of feedback-controlled processes using dynamic PCA and neural networks , 2003 .

[28]  Fugee Tsung,et al.  Joint Monitoring of PID-Controlled Processes , 1999 .

[29]  Fugee Tsung,et al.  Integrated design of run-to-run PID controller and SPC monitoring for process disturbance rejection , 1999 .

[30]  Panagiotis D. Christofides,et al.  Data-based monitoring and reconfiguration of a distributed model predictive control system , 2011, Proceedings of the 2011 American Control Conference.

[31]  S. Joe Qin,et al.  Control performance monitoring — a review and assessment , 1998 .

[32]  K. L. Anderson,et al.  A rule-based adaptive PID controller , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[33]  城塚 正,et al.  Chemical Engineering Scienceについて , 1962 .