On variants of the Euler sums and symmetric extensions of the Kaneko–Tsumura conjecture
暂无分享,去创建一个
Weiping Wang | Ce Xu | Weiping Wang | Ce Xu
[1] Djurdje Cvijovic. Derivative polynomials and closed-form higher derivative formulae , 2009, Appl. Math. Comput..
[2] Michael E. Hoffman. Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences , 1999, Electron. J. Comb..
[3] C. Krishnamachary,et al. On a Table for Calculating Eulerian Numbers Based on a New Method , 1924 .
[4] Ira M. Gessel,et al. On Miki's identity for Bernoulli numbers , 2005 .
[5] T. Murakami. On Hoffman’s t-values of maximal height and generators of multiple zeta values , 2021, Mathematische Annalen.
[6] Michael E. Hoffman. Derivative polynomials for tangent and secant , 1995 .
[7] Weiping Wang,et al. Explicit formulas of Euler sums via multiple zeta values , 2018, J. Symb. Comput..
[8] Donald E. Knuth,et al. Computation of Tangent, Euler, and Bernoulli Numbers* , 1967 .
[9] Jianqiang Zhao. Multiple Zeta Functions , 2016 .
[10] Gábor Hetyei. Tchebyshev triangulations of stable simplicial complexes , 2008, J. Comb. Theory, Ser. A.
[11] Michael E. Hoffman,et al. Multiple harmonic series. , 1992 .
[12] D. Zagier. Values of Zeta Functions and Their Applications , 1994 .
[13] Ce Xu,et al. Multiple zeta values and Euler sums , 2016, 1609.05863.
[14] Ce Xu. Some evaluations of infinite series involving parametric harmonic numbers , 2019, International Journal of Number Theory.
[15] Weiping Wang,et al. Euler sums and Stirling sums , 2018 .
[16] Michael E. Hoffman. An odd variant of multiple zeta values , 2016, Communications in Number Theory and Physics.
[17] M. Kaneko,et al. On multiple zeta values of level two , 2020 .
[18] Khristo N. Boyadzhiev. Derivative Polynomials for tanh, tan, sech and sec in Explicit Form , 2007 .
[19] Convolution formulae for Bernoulli numbers , 2010 .
[20] Zhi-Wei Sun,et al. New identities involving Bernoulli and Euler polynomials , 2006, J. Comb. Theory, Ser. A.
[21] Shi-Mei Ma,et al. Derivative polynomials and enumeration of permutations by number of interior and left peaks , 2012, Discret. Math..
[22] Ce Xu. Explicit evaluations for several variants of Euler sums , 2021, Rocky Mountain Journal of Mathematics.
[23] Jianqiang Zhao. Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values , 2016 .
[24] Philippe Flajolet,et al. Euler Sums and Contour Integral Representations , 1998, Exp. Math..
[25] Takashi Agoh,et al. Convolution identities and lacunary recurrences for Bernoulli numbers , 2007 .