Simple and fast annealing synthesis of titanium dioxide nanostructures and morphology transformation during annealing processes

Wire- and belt-like single-crystalline titanium dioxide nanostructures were synthesized by using a simple thermal annealing method, which has often been avoided for the synthesis of metal oxide nanostructures from high melting point metals such as Ti. The synthesis method requires neither high reaction temperature nor complicated reaction processes, and can be used for producing dense nanomaterials with relatively short reaction time at temperatures much lower than the melting point of titanium and titanium dioxide. Key synthesis factors including the choice of eutectic catalyst, growth temperature, and annealing time were systematically investigated. The synthesis reaction was promoted by a copper eutectic catalyst, producing long nanostructures with short reaction times. For example, it was observed that only 30 min of annealing time at 850 degrees C was enough to produce densely grown approximately 10 microm long nanowires with diameters of approximately 100 nm, and longer reaction time brought about morphology changes from wires to belts as well as producing longer nanostructures up to approximately 30 microm. The nanostructures have the crystalline rutile structure along the [Formula: see text] growth direction. Finally, our simple and effective method for the synthesis of TiO2 nanostructures could be utilized for growing other metal oxide nanowires from high melting temperature metals.

[1]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[2]  G. S. Wu,et al.  Fabrication and optical properties of TiO2 nanowire arrays made by sol–gel electrophoresis deposition into anodic alumina membranes , 2003 .

[3]  Shoushan Fan,et al.  The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres , 2003 .

[4]  Yunyi Fu,et al.  Synthesis of Fe2O3 nanowires by oxidation of iron , 2001 .

[5]  Younan Xia,et al.  CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air , 2002 .

[6]  Hye Jin Chun,et al.  Magnetic anisotropy of vertically aligned α-Fe2O3 nanowire array , 2006 .

[7]  Xueping Gao,et al.  Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation , 2007 .

[8]  A. Birner,et al.  Fabrication and Microstructuring of Hexagonally Ordered Two‐Dimensional Nanopore Arrays in Anodic Alumina , 1999 .

[9]  Xin Fang,et al.  Temperature-controlled growth of α-Al2O3 nanobelts and nanosheets , 2003 .

[10]  H. Zeng,et al.  Synthesis and Growth Discussion of One-Dimensional MgO Nanostructures: Nanowires, Nanobelts, and Nanotubes in VLS Mechanism , 2008 .

[11]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[12]  B. Gillot,et al.  The influence of various factors in the reduction of cuprous chloride by titanium: a kinetics study , 1998 .

[13]  L. Kavan,et al.  Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth , 2004 .

[14]  L. Francioso,et al.  Top-down contact lithography fabrication of a TiO2 nanowire array over a SiO2 mesa , 2006 .

[15]  Yunyi Fu,et al.  Magnetic properties of α-Fe2O3 nanowires , 2005 .

[16]  Susumu Yoshikawa,et al.  Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments , 2005 .

[17]  Bing Tan,et al.  Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. , 2006, The journal of physical chemistry. B.

[18]  L. Chan,et al.  Mechanism of solid-liquid-solid on the silicon oxide nanowire growth , 2006 .

[19]  P. Singjai,et al.  Size-controlled growth of TiO2 nanowires by oxidation of titanium substrates in the presence of ethanol vapor , 2007 .

[20]  Z. Fan,et al.  Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors , 2005 .

[21]  N. Saunders Phase diagram calculations for eight glass forming alloy systems , 1985 .

[22]  Craig A. Grimes,et al.  Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays , 2006 .

[23]  Y. Zhang,et al.  Field-emission properties of TiO2 nanowire arrays , 2005 .

[24]  Zhong Lin Wang,et al.  Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires. , 2005, The journal of physical chemistry. B.

[25]  Zhong Lin Wang Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. , 2004, Annual review of physical chemistry.

[26]  H. Zhang,et al.  Synthesis of large arrays of aligned α-Fe2O3 nanowires , 2003 .

[27]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[28]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[29]  Zhong Lin Wang,et al.  Ultra-long single crystalline nanoribbons of tin oxide , 2001 .

[30]  J. Wu,et al.  Characterization of Single-Crystalline TiO2 Nanowires Grown by Thermal Evaporation , 2005 .

[31]  C. Lim,et al.  Substrate-friendly synthesis of metal oxide nanostructures using a hotplate. , 2006, Small.

[32]  C. Kisielowski,et al.  Bicrystalline hematite nanowires. , 2005, The journal of physical chemistry. B.

[33]  Haoshen Zhou,et al.  A simple method to synthesize nanowires titanium dioxide from layered titanate particles , 2004 .

[34]  B. Gillot,et al.  The kinetics and mechanism of the low temperature corrosion of titanium with copper(I) chloride. A comparison with silicon and an SiTi alloy , 1992 .

[35]  Xiaobo Chen,et al.  Synthesis of titanium dioxide (TiO2) nanomaterials. , 2006, Journal of nanoscience and nanotechnology.

[36]  F. Lévy,et al.  TiO2 anatase thin films as gas sensors , 1995 .

[37]  John T. L. Thong,et al.  Efficient field emission from α-Fe2O3 nanoflakes on an atomic force microscope tip , 2005 .

[38]  R. Roy,et al.  Pressure-temperature studies of anatase, brookite, rutile and TiO2(II): A reply , 1968 .

[39]  Yong Lei,et al.  Preparation and photoluminescence of highly ordered TiO2 nanowire arrays , 2001 .

[40]  D. Bavykin,et al.  Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications , 2006 .

[41]  Ke‐long Huang,et al.  Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate , 2004 .

[42]  Haoshen Zhou,et al.  Ultralong single-crystal TiO2-B nanowires : Synthesis and electrochemical measurements , 2006 .

[43]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[44]  H. Yang,et al.  Synthetic architectures of TiO2/H2Ti5O11.H2O, ZnO/H2Ti5O11.H2O, ZnO/TiO2/H2Ti5O11.H2O, and ZnO/TiO2 nanocomposites. , 2005, Journal of the American Chemical Society.

[45]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[46]  Hongzheng Chen,et al.  High Photoconductive Vertically Oriented TiO2 Nanotube Arrays and Their Composites with Copper Phthalocyanine , 2008 .

[47]  Jing Zhu,et al.  A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture , 2001 .

[48]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[49]  C. Rossi,et al.  Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate , 2007 .

[50]  Joan Ramon Morante,et al.  Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO2 used for gas sensors , 2004 .

[51]  Z. Wang Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides—From Materials to Nanodevices , 2003 .

[52]  Y. Sung,et al.  Controlled growth of high-quality TiO2 nanowires on sapphire and silica , 2006 .