LAPACK WORKING NOTE 168 : PDSYEVR
暂无分享,去创建一个
[1] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[2] Ilse C. F. Ipsen. Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..
[3] James Demmel,et al. Practical experience in the numerical dangers of heterogeneous computing , 1997, TOMS.
[4] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[5] Beresford N. Parlett,et al. An implementation of the dqds algorithm (positive case) , 2000 .
[6] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .
[7] Inderjit S. Dhillon,et al. The design and implementation of the MRRR algorithm , 2006, TOMS.
[8] J. Demmel,et al. On the correctness of some bisection-like parallel eigenvalue algorithms in floating point arithmetic. , 1995 .
[9] Jack Dongarra,et al. MPI: The Complete Reference , 1996 .
[10] Charles L. Lawson,et al. Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.
[11] Jack J. Dongarra,et al. An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.
[12] Inderjit S. Dhillon,et al. Current inverse iteration software can fail , 1998 .
[13] Jack Dongarra,et al. Installation Guide for ScaLAPACK , 1992 .
[14] Inderjit S. Dhillon,et al. Orthogonal Eigenvectors and Relative Gaps , 2003, SIAM J. Matrix Anal. Appl..
[15] Jack Dongarra,et al. LAPACK 2005 Prospectus: Reliable and Scalable Software for Linear Algebra Computations on High End Computers , 2005 .
[16] P. Alpatov,et al. PLAPACK Parallel Linear Algebra Package Design Overview , 1997, ACM/IEEE SC 1997 Conference (SC'97).
[17] B. Parlett,et al. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices , 2004 .
[18] James Demmel,et al. ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Computers - Design Issues and Performance , 1995, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.
[19] Ilse C. F. Ipsen. A history of inverse iteration , 1994 .
[20] Henri Casanova,et al. Parallel and Distributed Scientific Computing: A Numerical Linear Algebra Problem Solving Environment Designer's Perspective , 1999 .
[21] Jaeyoung Choi,et al. A Proposal for a Set of Parallel Basic Linear Algebra Subprograms , 1995, PARA.
[22] Inderjit S. Dhillon,et al. Fernando's solution to Wilkinson's problem: An application of double factorization , 1997 .
[23] Jack Dongarra,et al. LAPACK Working Note 37: Two Dimensional Basic Linear Algebra Communication Subprograms , 1991 .
[24] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[25] Robert A. van de Geijn,et al. Using PLAPACK - parallel linear algebra package , 1997 .
[26] B. Parlett,et al. Relatively robust representations of symmetric tridiagonals , 2000 .
[27] Robert A. van de Geijn,et al. A Parallel Eigensolver for Dense Symmetric Matrices Based on Multiple Relatively Robust Representations , 2005, SIAM J. Sci. Comput..
[28] B. Parlett,et al. LAPACK WORKING NOTE 167: SUBSET COMPUTATIONS WITH THE MRRR ALGORITHM , 2005 .