LAPACK WORKING NOTE 168 : PDSYEVR

In the 90s, Dhillon and Parlett devised a new algorithm (Multiple Relatively Robust Representations, MRRR) for computing numerically orthogonal eigenvectors of a symmetric tridiagonal matrix T with O(n) cost. In this paper, we describe the design of pdsyevr, a ScaLAPACK implementation of the MRRR algorithm to compute the eigenpairs in parallel. It represents a substantial improvement over the symmetric eigensolver pdsyevx that is currently in ScaLAPACK and is going to be part of the next ScaLAPACK release. AMS subject classifications. 65F15, 65Y15.

[1]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[2]  Ilse C. F. Ipsen Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..

[3]  James Demmel,et al.  Practical experience in the numerical dangers of heterogeneous computing , 1997, TOMS.

[4]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[5]  Beresford N. Parlett,et al.  An implementation of the dqds algorithm (positive case) , 2000 .

[6]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[7]  Inderjit S. Dhillon,et al.  The design and implementation of the MRRR algorithm , 2006, TOMS.

[8]  J. Demmel,et al.  On the correctness of some bisection-like parallel eigenvalue algorithms in floating point arithmetic. , 1995 .

[9]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[10]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[11]  Jack J. Dongarra,et al.  An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.

[12]  Inderjit S. Dhillon,et al.  Current inverse iteration software can fail , 1998 .

[13]  Jack Dongarra,et al.  Installation Guide for ScaLAPACK , 1992 .

[14]  Inderjit S. Dhillon,et al.  Orthogonal Eigenvectors and Relative Gaps , 2003, SIAM J. Matrix Anal. Appl..

[15]  Jack Dongarra,et al.  LAPACK 2005 Prospectus: Reliable and Scalable Software for Linear Algebra Computations on High End Computers , 2005 .

[16]  P. Alpatov,et al.  PLAPACK Parallel Linear Algebra Package Design Overview , 1997, ACM/IEEE SC 1997 Conference (SC'97).

[17]  B. Parlett,et al.  Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices , 2004 .

[18]  James Demmel,et al.  ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Computers - Design Issues and Performance , 1995, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[19]  Ilse C. F. Ipsen A history of inverse iteration , 1994 .

[20]  Henri Casanova,et al.  Parallel and Distributed Scientific Computing: A Numerical Linear Algebra Problem Solving Environment Designer's Perspective , 1999 .

[21]  Jaeyoung Choi,et al.  A Proposal for a Set of Parallel Basic Linear Algebra Subprograms , 1995, PARA.

[22]  Inderjit S. Dhillon,et al.  Fernando's solution to Wilkinson's problem: An application of double factorization , 1997 .

[23]  Jack Dongarra,et al.  LAPACK Working Note 37: Two Dimensional Basic Linear Algebra Communication Subprograms , 1991 .

[24]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[25]  Robert A. van de Geijn,et al.  Using PLAPACK - parallel linear algebra package , 1997 .

[26]  B. Parlett,et al.  Relatively robust representations of symmetric tridiagonals , 2000 .

[27]  Robert A. van de Geijn,et al.  A Parallel Eigensolver for Dense Symmetric Matrices Based on Multiple Relatively Robust Representations , 2005, SIAM J. Sci. Comput..

[28]  B. Parlett,et al.  LAPACK WORKING NOTE 167: SUBSET COMPUTATIONS WITH THE MRRR ALGORITHM , 2005 .