Decomposition and Completion of Sum-of-Squares Matrices

This paper introduces a notion of decomposition and completion of sum-of-squares (SOS) matrices. We show that a subset of sparse SOS matrices with chordal sparsity patterns can be equivalently decomposed into a sum of multiple SOS matrices that are nonzero only on a principal submatrix. Also, the completion of an SOS matrix is equivalent to a set of SOS conditions on its principal submatrices and a consistency condition on the Gram representation of the principal submatrices. These results are partial extensions of chordal decomposition and completion of scalar matrices to matrices with polynomial entries. We apply the SOS decomposition result to exploit sparsity in matrix-valued SOS programs. Numerical results demonstrate the high potential of this approach for solving large-scale sparse matrix-valued SOS programs.

[1]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[2]  Maryam Kamgarpour,et al.  Scalable analysis of linear networked systems via chordal decomposition , 2018, 2018 European Control Conference (ECC).

[3]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[4]  Andreas Griewank,et al.  On the existence of convex decompositions of partially separable functions , 1984, Math. Program..

[5]  L. Rodman,et al.  Positive semidefinite matrices with a given sparsity pattern , 1988 .

[6]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[7]  M. Kojima Sums of Squares Relaxations of Polynomial Semidefinite Programs , 2003 .

[8]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[9]  Martin S. Andersen,et al.  Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..

[10]  Yang Zheng,et al.  Scalable Design of Structured Controllers Using Chordal Decomposition , 2018, IEEE Transactions on Automatic Control.

[11]  P. Parrilo,et al.  Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.

[12]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[13]  Yang Zheng,et al.  Chordal decomposition in operator-splitting methods for sparse semidefinite programs , 2017, Mathematical Programming.

[14]  Anders Rantzer,et al.  Robust Stability Analysis of Sparsely Interconnected Uncertain Systems , 2013, IEEE Transactions on Automatic Control.

[15]  Amir Ali Ahmadi,et al.  Improving efficiency and scalability of sum of squares optimization: Recent advances and limitations , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[16]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[17]  Renato D. C. Monteiro,et al.  Large-scale semidefinite programming via a saddle point Mirror-Prox algorithm , 2007, Math. Program..

[18]  Yifan Sun,et al.  Decomposition in Conic Optimization with Partially Separable Structure , 2013, SIAM J. Optim..

[19]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[20]  Antonis Papachristodoulou,et al.  Positive Forms and Stability of Linear Time-Delay Systems , 2006, CDC.

[21]  Yang Zheng,et al.  Fast ADMM for semidefinite programs with chordal sparsity , 2016, 2017 American Control Conference (ACC).

[22]  Kazuo Murota,et al.  Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..

[23]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[24]  Joachim Dahl,et al.  Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones , 2010, Math. Program. Comput..

[25]  Georgios B. Giannakis,et al.  Distributed Optimal Power Flow for Smart Microgrids , 2012, IEEE Transactions on Smart Grid.

[26]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .