Decomposition and Completion of Sum-of-Squares Matrices
暂无分享,去创建一个
Yang Zheng | Antonis Papachristodoulou | Giovanni Fantuzzi | A. Papachristodoulou | Yang Zheng | Giovanni Fantuzzi
[1] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[2] Maryam Kamgarpour,et al. Scalable analysis of linear networked systems via chordal decomposition , 2018, 2018 European Control Conference (ECC).
[3] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[4] Andreas Griewank,et al. On the existence of convex decompositions of partially separable functions , 1984, Math. Program..
[5] L. Rodman,et al. Positive semidefinite matrices with a given sparsity pattern , 1988 .
[6] Carsten W. Scherer,et al. Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..
[7] M. Kojima. Sums of Squares Relaxations of Polynomial Semidefinite Programs , 2003 .
[8] Charles R. Johnson,et al. Positive definite completions of partial Hermitian matrices , 1984 .
[9] Martin S. Andersen,et al. Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..
[10] Yang Zheng,et al. Scalable Design of Structured Controllers Using Chordal Decomposition , 2018, IEEE Transactions on Automatic Control.
[11] P. Parrilo,et al. Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.
[12] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..
[13] Yang Zheng,et al. Chordal decomposition in operator-splitting methods for sparse semidefinite programs , 2017, Mathematical Programming.
[14] Anders Rantzer,et al. Robust Stability Analysis of Sparsely Interconnected Uncertain Systems , 2013, IEEE Transactions on Automatic Control.
[15] Amir Ali Ahmadi,et al. Improving efficiency and scalability of sum of squares optimization: Recent advances and limitations , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).
[16] Pablo A. Parrilo,et al. Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..
[17] Renato D. C. Monteiro,et al. Large-scale semidefinite programming via a saddle point Mirror-Prox algorithm , 2007, Math. Program..
[18] Yifan Sun,et al. Decomposition in Conic Optimization with Partially Separable Structure , 2013, SIAM J. Optim..
[19] Rekha R. Thomas,et al. Semidefinite Optimization and Convex Algebraic Geometry , 2012 .
[20] Antonis Papachristodoulou,et al. Positive Forms and Stability of Linear Time-Delay Systems , 2006, CDC.
[21] Yang Zheng,et al. Fast ADMM for semidefinite programs with chordal sparsity , 2016, 2017 American Control Conference (ACC).
[22] Kazuo Murota,et al. Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..
[23] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[24] Joachim Dahl,et al. Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones , 2010, Math. Program. Comput..
[25] Georgios B. Giannakis,et al. Distributed Optimal Power Flow for Smart Microgrids , 2012, IEEE Transactions on Smart Grid.
[26] Masakazu Muramatsu,et al. Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .