Potential Energy Curves for Alkali Metal - Rare Gas Exciplex Lasers

Lasers driven by optical pumping of alkali metal rare gas collision pairs have been demonstrated recently. Accurate potential energy curves for the alkali metal rare gas dimers are need to analyze and predict the scaling characteristics of this type of laser system. We are using high-level theoretical methods to obtain these data and predict the absorption spectra. The potential energy curves, transition dipole moments, and spin-orbit coupling matrix elements for MRg (M=Rb,Cs and Rg=Ar,Kr) electronic states converging to the lowest three dissociation limits have been characterized. Quasi-relativistic matrix elements have been obtained for a wide range of internuclear distances using different sets of small core relativistic pseudopotentials. The core-valence correlation was included in a large-scale multi-reference configuration interaction (MR-CI) treatment. Excited state potentials were also examined using multi-reference averaged quadratic coupled cluster (MR-AQCC) methods. The data obtained from these calculations have been used to predict the absorption spectra for the MRg pairs using semi-classical and quantum mechanical models.

[1]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[2]  Hans-Joachim Werner,et al.  Internally contracted multiconfiguration-reference configuration interaction calculations for excited states , 1992 .

[3]  William J. Kessler,et al.  Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D(2) blue and red satellites. , 2009, Optics letters.

[4]  J. Pascale,et al.  Excited molecular terms of the alkali‐rare gas atom pairs , 1974 .

[5]  Michael C. Heaven,et al.  Multi-dimensional modeling of the XPAL system , 2010, LASE.

[6]  Sheldon S Q Wu,et al.  Hydrocarbon-free resonance transition 795-nm rubidium laser , 2008, SPIE LASE.

[7]  Walter C. Ermler,et al.  Ab initio relativistic effective potentials with spin–orbit operators. IV. Cs through Rn , 1985 .

[8]  Boris V. Zhdanov,et al.  A laser diode array pumped cesium vapor laser , 2007, SPIE LASE.

[9]  Rodney J. Bartlett,et al.  Approximately extensive modifications of the multireference configuration interaction method: A theoretical and practical analysis , 1995 .

[10]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[11]  R. Knize,et al.  Diode-pumped 10 W continuous wave cesium laser. , 2007, Optics letters.

[12]  H. Stoll,et al.  Ab initio energy‐adjusted pseudopotentials for the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities , 1995 .

[13]  D. Carroll,et al.  Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation , 2009 .

[14]  David L. Carroll,et al.  Lasing in alkali atoms pumped by the dissociation of alkali-rare gas exciplexes (excimers) , 2009, LASE.

[15]  Lothar Frommhold,et al.  Collision-induced absorption in gases , 2006 .

[16]  Alan Gallagher,et al.  Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials , 1972 .

[17]  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties: III. Alkali (Li, Na, K, Rb) and alkaline-earth (Be, Mg, Ca, Sr) atoms , 1991 .

[18]  H. Rubahn Models for bond distance dependent alkali dimer–rare gas potentials , 1990 .

[19]  W. E. Baylis,et al.  Unified Franck-Condon treatment of pressure broadening of spectral lines , 1975 .

[20]  V. K. Kanz,et al.  End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling , 2004 .

[21]  C. Callegari,et al.  High-spin alkali trimers on helium nanodroplets: spectral separation and analysis. , 2008, The Journal of chemical physics.

[22]  V. Kellö,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[23]  B. Roux,et al.  Comment on "Free energy simulations of single and double ion occupancy in gramicidin A" [J. Chem. Phys. 126, 105103 (2007)]. , 2008, The Journal of chemical physics.

[24]  P. Gori-Giorgi,et al.  A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers , 2006 .

[25]  R. Knize,et al.  Hydrocarbon-free potassium laser , 2007 .

[26]  J. Visticot,et al.  Semiclassical description of the satellite profile of the Cs(6S1/2 to 5D5/2) transition perturbed by argon allowing molecular potential determination , 1981 .

[27]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[28]  J. Ullrich,et al.  Reply to "Comment on `Appearance and disappearance of the second Born effects in the (e,3e) reaction on He' " , 2005 .

[29]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[30]  Boris V. Zhdanov,et al.  Highly efficient optically pumped cesium vapor laser , 2006 .

[31]  Ralph H. Page,et al.  Resonance transition 795-nm rubidium laser using 3He buffer gas , 2008 .

[32]  J. Visticot,et al.  Experimental study of the stellite of the Cs(6S1/2-5D5/2) line perturbed by a rare gas and comparison with the predictions of a quasimolecular model , 1981 .

[33]  The origin of Λ-doubling effect for the B 1∏ and D 1∏ states of NaK , 2000 .

[34]  Joseph T. Verdeyen,et al.  Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers , 2008 .

[35]  G Boyadjian,et al.  Laser diode array pumped continuous wave Rubidium vapor laser. , 2008, Optics express.

[36]  H. Nakatsuji,et al.  Collision induced absorption spectra and line broadening of CsRg system (Rg=Xe, Kr, Ar, Ne) studied by the symmetry adapted cluster‐configuration interaction (SAC‐Cl) method , 1995 .

[37]  A. Zaitsevskii,et al.  Permanent electric dipoles and {lambda}-doubling constants in the lowest {sup 1}{pi} states of RbCs , 2005 .

[38]  B. V. Zhdanov,et al.  Advanced diode-pumped alkali lasers , 2008, Advanced Laser Technologies.

[39]  Ralph H. Page,et al.  Resonance transition 795-nm rubidium laser using He buffer gas , 2008, High-Power Laser Ablation.

[40]  Joseph T. Verdeyen,et al.  Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers , 2010, LASE.

[41]  D. Levandier,et al.  H2+(X,v+=0~15,N+=1)+Heプロトン移動反応のパルス電界イオン化光電子二次イオンコインシデンス研究 , 2005 .

[42]  Boris V. Zhdanov,et al.  Cesium vapor laser with transverse pumping by multiple laser diode arrays , 2008 .

[43]  G. Scoles,et al.  Intermolecular forces via hybrid Hartree–Fock–SCF plus damped dispersion (HFD) energy calculations. An improved spherical model , 1982 .

[44]  A. Tam,et al.  Absorption studies of excimer transitions in Cs-noble-gas and Rb-noble-gas molecules , 1976 .

[45]  P. Schwerdtfeger,et al.  All-electron and relativistic pseudopotential studies for the group 1 element polarizabilities from K to element 119. , 2005, The Journal of chemical physics.

[46]  H. Pauly,et al.  Interferenzen bei atomaren Stoßprozessen und ihre Interpretation durch ein modifiziertes Lennard-Jones-Potential , 1968 .

[47]  J. Tellinghuisen The Franck—Condon Principle in Bound‐Free Transitions , 2007 .

[48]  A. Gallagher,et al.  Potentials and continuum spectra of Rb‐noble gas molecules , 1974 .

[49]  Boris V. Zhdanov,et al.  Efficient diode pumped cesium vapor amplifier , 2008 .