Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing

Learning approaches for natural language processing.- Separating learning and representation.- Natural language grammatical inference: A comparison of recurrent neural networks and machine learning methods.- Extracting rules for grammar recognition from Cascade-2 networks.- Generating English plural determiners from semantic representations: A neural network learning approach.- Knowledge acquisition in concept and document spaces by using self-organizing neural networks.- Using hybrid connectionist learning for speech/language analysis.- SKOPE: A connectionist/symbolic architecture of spoken Korean processing.- Integrating different learning approaches into a multilingual spoken language translation system.- Learning language using genetic algorithms.- A statistical syntactic disambiguation program and what it learns.- Training stochastic grammars on semantical categories.- Learning restricted probabilistic link grammars.- Learning PP attachment from corpus statistics.- A minimum description length approach to grammar inference.- Automatic classification of dialog acts with Semantic Classification Trees and Polygrams.- Sample selection in natural language learning.- Learning information extraction patterns from examples.- Implications of an automatic lexical acquisition system.- Using learned extraction patterns for text classification.- Issues in inductive learning of domain-specific text extraction rules.- Applying machine learning to anaphora resolution.- Embedded machine learning systems for natural language processing: A general framework.- Acquiring and updating hierarchical knowledge for machine translation based on a clustering technique.- Applying an existing machine learning algorithm to text categorization.- Comparative results on using inductive logic programming for corpus-based parser construction.- Learning the past tense of English verbs using inductive logic programming.- A dynamic approach to paradigm-driven analogy.- Can punctuation help learning?.- Using parsed corpora for circumventing parsing.- A symbolic and surgical acquisition of terms through variation.- A revision learner to acquire verb selection rules from human-made rules and examples.- Learning from texts - A terminological metareasoning perspective.

[1]  Jordan B. Pollack,et al.  Recursive Distributed Representations , 1990, Artif. Intell..

[2]  Michael C. Mozer,et al.  Using Relevance to Reduce Network Size Automatically , 1989 .

[3]  David Fisher,et al.  CRYSTAL: Inducing a Conceptual Dictionary , 1995, IJCAI.

[4]  Simonetta Montemagni,et al.  Structural Patterns vs. String Patterns for Extracting Semantic Information from Dictionaries , 1992, COLING.

[5]  Gabriele Scheler,et al.  Learning the Semantics of Aspect , 1995 .

[6]  Paul S. Jacobs,et al.  Acquiring Lexical Knowledge from Text: A Case Study , 1988, AAAI.

[7]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[8]  Beth Sundheim,et al.  A Performance Evaluation of Text-Analysis Technologies , 1991, AI Mag..

[9]  Jaime G. Carbonell,et al.  Derivational analogy: a theory of reconstructive problem solving and expertise acquisition , 1993 .

[10]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[11]  Hervé Bourlard,et al.  Connectionist speech recognition , 1993 .

[12]  Jordan B. Pollack,et al.  Massively Parallel Parsing: A Strongly Interactive Model of Natural Language Interpretation , 1988, Cogn. Sci..

[13]  James A. Hendler,et al.  Marker-Passing over Microfeatures: Towards a Hybrid Symbolic/Connectionist Model , 1989, Cogn. Sci..

[14]  Joachim Diederich An Explanation Component for a Connectionist Inference System , 1990, ECAI.

[15]  Ellen Riloff,et al.  Automatically Constructing a Dictionary for Information Extraction Tasks , 1993, AAAI.

[16]  N. E. Sharkey,et al.  A PDP learning approach to natural language understanding , 1989 .

[17]  Stefan Wermter,et al.  Learning Fault-Tolerant Speech Parsing with SCREEN , 1994, AAAI.

[18]  Nancy Ide,et al.  Word Sense Disambiguation with Very Large Neural Networks Extracted from Machine Readable Dictionaries , 1990, COLING.

[19]  Penelope Sibun,et al.  A Practical Part-of-Speech Tagger , 1992, ANLP.

[20]  Gerard Kempen,et al.  Incremental syntactic tree formation in human sentence processing: A cognitive architecture based on activation decay and simulated annealing , 1989 .

[21]  Steven J. DeRose,et al.  Grammatical Category Disambiguation by Statistical Optimization , 1988, CL.

[22]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[23]  Julian M. Kupiec,et al.  Robust part-of-speech tagging using a hidden Markov model , 1992 .

[24]  Kenneth Ward Church,et al.  Word Association Norms, Mutual Information, and Lexicography , 1989, ACL.

[25]  Michael I. Jordan Attractor dynamics and parallelism in a connectionist sequential machine , 1990 .

[26]  Jerome A. Feldman,et al.  Connectionist Models and Their Properties , 1982, Cogn. Sci..

[27]  Eric Brill,et al.  A corpus-based approach to language learning , 1993 .

[28]  Gerald DeJong,et al.  Learning Schemata for Natural Language Processing , 1985, IJCAI.

[29]  Lucy Vanderwende,et al.  Automatically Deriving Structured Knowledge Bases From On-Line Dictionaries , 1993 .

[30]  Geoffrey Leech,et al.  The Automatic Grammatical Tagging of the LOB Corpus , 1983 .

[31]  Ray Bareiss,et al.  Concept Learning and Heuristic Classification in WeakTtheory Domains , 1990, Artif. Intell..

[32]  Gregory Grefenstette,et al.  Explorations in automatic thesaurus discovery , 1994 .

[33]  James L. McClelland,et al.  Mechanisms of Sentence Processing: Assigning Roles to Constituents of Sentences , 1986 .

[34]  Kristian J. Hammond,et al.  CHEF: A Model of Case-Based Planning , 1986, AAAI.

[35]  Stefan Wermter Hybrid Connectionist Natural Language Processing , 1994 .

[36]  Jaime G. Carbonell,et al.  Towards a Self-Extending Parser , 1979, ACL.

[37]  David M. Magerman Natural Language Parsing as Statistical Pattern Recognition , 1994, ArXiv.

[38]  James L. McClelland,et al.  PDP models and general issues in cognitive science , 1986 .

[39]  Dan I. Moldovan,et al.  Acquisition of semantic patterns for information extraction from corpora , 1993, Proceedings of 9th IEEE Conference on Artificial Intelligence for Applications.

[40]  Frank Smadja,et al.  From N-Grams to Collocations: An Evaluation of Xtract , 1991, ACL.

[41]  John Cocke,et al.  A Statistical Approach to Machine Translation , 1990, CL.

[42]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[43]  R. Reilly,et al.  Connectionist approaches to natural language processing , 1994 .

[44]  James L. McClelland,et al.  Learning and Applying Contextual Constraints in Sentence Comprehension , 1990, Artif. Intell..

[45]  Garrison W. Cottrell,et al.  A Model of Lexical Access of Ambiguous Words , 1984, AAAI.

[46]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[47]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[48]  Lisa F. Rau,et al.  SCISOR: extracting information from on-line news , 1990, CACM.

[49]  Stefan Wermter Konnektionistische/Hybride Verarbeitung Natürlicher Sprache, Zusammenfassung von der AAAI92, ECAI92, INSP92 und dem Workshop über "Neural Networks and a New AI" , 1993, Künstliche Intell..

[50]  Eugene Charniak,et al.  Statistical language learning , 1997 .

[51]  Kanaan A. Faisal,et al.  Connectionism and Determinism in a Syntactic Parser , 1990 .

[52]  James Henderson,et al.  Connectionist syntactic parsing using temporal variable binding , 1994 .

[53]  John R. Anderson,et al.  Induction of Augmented Transition Networks , 1977, Cogn. Sci..

[54]  Richard Granger,et al.  FOUL-UP: A Program that Figures Out Meanings of Words from Context , 1977, IJCAI.

[55]  Ron Sun,et al.  Robust Reasoning: Integrating Rule-Based and Similarity-Based Reasoning , 1995, Artif. Intell..

[56]  Martin Kay,et al.  Text-Translation Alignment , 1993, Comput. Linguistics.

[57]  Geoffrey E. Hinton,et al.  The appeal of parallel distributed processing , 1986 .

[58]  Ajay N. Jain,et al.  Generalization Performance in PARSEC - A Structured Connectionist Parsing Architecture , 1991, NIPS.

[59]  Harold L. Somers,et al.  New Methods in Language Processing , 1997 .

[60]  John D. Burger,et al.  Probabilistic Resolution of Anaphoric Reference , 1992 .