Semiclassical evolution with low regularity

We prove semiclassical estimates for the Schr\"odinger-von Neumann evolution with $C^{1,1}$ potentials and density matrices whose square root have either Wigner functions with low regularity independent of the dimension, or matrix elements between Hermite functions having long range decay. The estimates are settled in different weak topologies and apply to initial density operators whose square root have Wigner functions $7$ times differentiable, independently of the dimension. They also apply to the $N$ body quantum dynamics uniformly in $N$. In a appendix, we finally estimate the dependence in the dimension of the constant appearing on the Calderon-Vaillancourt Theorem.

[1]  Thierry Paul,et al.  Coarse-scale representations and smoothed Wigner transforms , 2008, 0804.0259.

[2]  Stephanie Koch,et al.  Harmonic Analysis In Phase Space , 2016 .

[3]  T. Paul,et al.  On the Mean Field and Classical Limits of Quantum Mechanics , 2015, Communications in Mathematical Physics.

[4]  Thierry Paul,et al.  The Schrödinger Equation in the Mean-Field and Semiclassical Regime , 2015, 1510.06681.

[5]  K. Hannabuss,et al.  HARMONIC ANALYSIS IN PHASE SPACE: (Annals of Mathematics Studies 122) , 1990 .

[6]  Thierry Paul,et al.  On the Convergence of Time Splitting Methods for Quantum Dynamics in the Semiclassical Regime , 2019, Found. Comput. Math..

[7]  C. Villani Optimal Transport: Old and New , 2008 .

[8]  T. Paul,et al.  Semiclassical limit for mixed states with singular and rough potentials , 2010, 1012.2483.

[9]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[10]  V. Sadovnichii Theory of operators , 1991 .

[11]  B. Simon Trace ideals and their applications , 1979 .

[12]  Thierry Paul,et al.  WAVE PACKETS AND THE QUADRATIC MONGE-KANTOROVICH DISTANCE IN QUANTUM MECHANICS , 2017, 1707.04161.

[13]  J. Leray,et al.  Séminaire sur les équations aux dérivées partielles , 1977 .

[14]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[15]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[16]  Emanuele Caglioti,et al.  Quantum Optimal Transport is Cheaper , 2019, ArXiv.

[17]  P. Gérard,et al.  Mesures semi-classiques et ondes de Bloch , 1991 .

[18]  W. Marsden I and J , 2012 .

[19]  C. Villani Topics in Optimal Transportation , 2003 .

[20]  I. Hwang THE L2-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS , 1987 .

[21]  Nicolas Lerner,et al.  Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators , 2010 .

[22]  A. Grossmann,et al.  Proof of completeness of lattice states in the k q representation , 1975 .

[23]  T. Paul,et al.  Semiclassical limit of quantum dynamics with rough potentials and well‐posedness of transport equations with measure initial data , 2010, 1006.5388.