Goal-oriented adaptivity for GMsFEM

In this paper we develop two goal-oriented adaptive strategies for a posteriori error estimation within the generalized multiscale finite element framework. In this methodology, one seeks to determine the number of multiscale basis functions adaptively for each coarse region to efficiently reduce the error in the goal functional. Our first error estimator uses a residual based strategy where local indicators on each coarse neighborhood are the product of local indicators for the primal and dual problems, respectively. In the second approach, viewed as the multiscale extension of the dual weighted residual method (DWR), the error indicators are computed as the pairing of the local H - 1 residual of the primal problem weighed by a projection into the primal space of the H 0 1 dual solution from an enriched space, over each coarse neighborhood. In both of these strategies, the goal-oriented indicators are then used in place of a standard residual-based indicator to mark coarse neighborhoods of the mesh for further enrichment in the form of additional multiscale basis functions. The method is demonstrated on high-contrast problems with heterogeneous multiscale coefficients, and is seen to outperform the standard residual based strategy with respect to efficient reduction of error in the goal function.

[1]  Mario S. Mommer,et al.  A Goal-Oriented Adaptive Finite Element Method with Convergence Rates , 2009, SIAM J. Numer. Anal..

[2]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[3]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[4]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[5]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..

[6]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[7]  L. Durlofsky,et al.  A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations , 2003 .

[8]  Stein Krogstad,et al.  A Hierarchical Multiscale Method for Two-Phase Flow Based upon Mixed Finite Elements and Nonuniform Coarse Grids , 2006, Multiscale Model. Simul..

[9]  Louis J. Durlofsky,et al.  An Ensemble Level Upscaling Approach for Efficient Estimation of Fine-Scale Production Statistics Using Coarse-Scale Simulations , 2007 .

[10]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[11]  L. Durlofsky Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .

[12]  Murtazo Nazarov,et al.  Goal-oriented adaptive finite element methods for elliptic problems revisited , 2015, J. Comput. Appl. Math..

[13]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[14]  Yalchin Efendiev,et al.  An Energy-Conserving Discontinuous Multiscale Finite Element Method for the wave equation in Heterogeneous Media , 2011, Adv. Data Sci. Adapt. Anal..

[15]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[16]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[17]  Michael J. Holst,et al.  Convergence of goal-oriented adaptive finite element methods for semilinear problems , 2012, Comput. Vis. Sci..

[18]  Yalchin Efendiev,et al.  An adaptive GMsFEM for high-contrast flow problems , 2013, J. Comput. Phys..

[19]  Michael J. Holst,et al.  Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..

[20]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[21]  Yalchin Efendiev,et al.  Residual-driven online generalized multiscale finite element methods , 2015, J. Comput. Phys..

[22]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[23]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods for problems in perforated heterogeneous domains , 2015, 1501.03536.

[24]  Yalchin Efendiev,et al.  Reduced-Contrast Approximations for High-Contrast Multiscale Flow Problems , 2010, Multiscale Model. Simul..

[25]  Yalchin Efendiev,et al.  Mixed Generalized Multiscale Finite Element Methods and Applications , 2014, Multiscale Model. Simul..

[26]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[27]  Patrick Jenny,et al.  A hierarchical fracture model for the iterative multiscale finite volume method , 2011, J. Comput. Phys..

[28]  Yalchin Efendiev,et al.  Generalized Multiscale Finite Element Methods. Oversampling Strategies , 2013, 1304.4888.

[29]  Michael J. Holst,et al.  Generalized Green's Functions and the Effective Domain of Influence , 2005, SIAM J. Sci. Comput..

[30]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[31]  Yalchin Efendiev,et al.  Generalized Multiscale Finite Element Methods for Wave Propagation in Heterogeneous Media , 2013, Multiscale Model. Simul..

[32]  K. Bathe,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[33]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[34]  Thomas Grätsch,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[35]  Yalchin Efendiev,et al.  A Multiscale HDG Method for Second Order Elliptic Equations. Part I. Polynomial and Homogenization-Based Multiscale Spaces , 2013, SIAM J. Numer. Anal..

[36]  Yalchin Efendiev,et al.  Spectral Element Agglomerate Algebraic Multigrid Methods for Elliptic Problems with High-Contrast Coefficients , 2011 .

[37]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[38]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[39]  Leszek Demkowicz,et al.  Multiscale modeling using goal-oriented adaptivity and numerical homogenization. Part I: Mathematical formulation and numerical results , 2012 .

[40]  Yalchin Efendiev,et al.  Generalized multiscale finite element method. Symmetric interior penalty coupling , 2013, J. Comput. Phys..

[41]  Yalchin Efendiev,et al.  Adaptive mixed GMsFEM for flows in heterogeneous media , 2015 .

[42]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..