Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project

Satellite data provide a large range of information on glacier dynamics and changes. Results are often reported, provided and used without consideration of measurement accuracy (difference to a true value) and precision (variability of independent assessments). Whereas accuracy might be difficult to determine due to the limited availability of appropriate reference data and the complimentary nature of satellite measurements, precision can be obtained from a large range of measures with a variable effort for determination. This study provides a systematic overview on the factors influencing accuracy and precision of glacier area, elevation change (from altimetry and DEM differencing), and velocity products derived from satellite data, along with measures for calculating them. A tiered list of recommendations is provided (sorted for effort from Level 0 to 3) as a guide for analysts to apply what is possible given the datasets used and available to them. The more simple measures to describe product quality (Levels 0 and 1) can often easily be applied and should thus always be reported. Medium efforts (Level 2) require additional work but provide a more realistic assessment of product precision. Real accuracy assessment (Level 3) requires independent and coincidently acquired reference data with high accuracy. However, these are rarely available and their transformation into an unbiased source of information is challenging. This overview is based on the experiences and lessons learned in the ESA project Glaciers_cci rather than a review of the literature.

[1]  F. Paul,et al.  Glacier-specific elevation changes in parts of western Alaska , 2015, Annals of Glaciology.

[2]  R. Armstrong,et al.  Quality in the GLIMS Glacier Database , 2014 .

[3]  A. Cazenave,et al.  The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables , 2013 .

[4]  James D. Spinhirne,et al.  Atmospheric multiple scattering effects on GLAS altimetry. I. Calculations of single pulse bias , 2001, IEEE Trans. Geosci. Remote. Sens..

[5]  G. Moholdt,et al.  Reanalysing glacier mass balance measurement series , 2013 .

[6]  Arzhan B. Surazakov,et al.  Estimating volume change of mountain glaciers using SRTM and map-based topographic data , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Andrés Rivera,et al.  Recent glacier variations at the Aconcagua basin, central Chilean Andes , 2008, Annals of Glaciology.

[8]  Melanie Rankl,et al.  Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models , 2016, Annals of Glaciology.

[9]  Louise Sandberg Sørensen,et al.  Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet , 2016 .

[10]  Andreas Kääb,et al.  Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity , 2016, Remote. Sens..

[11]  Andrew Fleming,et al.  Open Access Data in Polar and Cryospheric Remote Sensing , 2014, Remote. Sens..

[12]  Tobias Bolch,et al.  Glacier mapping: a review with special reference to the Indian Himalayas , 2009 .

[13]  J. Janke,et al.  Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile , 2014 .

[14]  Mark Inall,et al.  Calving rates at tidewater glaciers vary strongly with ocean temperature , 2015, Nature Communications.

[15]  Emmanuel Trouvé,et al.  Elevation Changes Inferred From TanDEM-X Data Over the Mont-Blanc Area: Impact of the X-Band Interferometric Bias , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16]  Misganu Debella-Gilo,et al.  Locally adaptive template sizes for matching repeat images of mass movements , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[17]  Andreas Kääb,et al.  The new remote-sensing-derived Swiss glacier inventory: II. First results , 2002, Annals of Glaciology.

[18]  Curt H. Davis,et al.  A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters , 1997, IEEE Trans. Geosci. Remote. Sens..

[19]  I. Berthling Beyond confusion: Rock glaciers as cryo-conditioned landforms , 2011 .

[20]  Wolfgang Wagner,et al.  Uncertainty information in climate data records from Earth observation , 2017 .

[21]  A. Kääb,et al.  Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery , 2011 .

[23]  Determination of Changes in Volume and Elevation of Glaciers using Digital Elevation Models for the Vernagtferner, Ôtztal Alps, Austria , 1986 .

[24]  Andreas Kääb,et al.  Regional Glacier Mapping Using Optical Satellite Data Time Series , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[25]  Bob E. Schutz,et al.  ICESat Antarctic elevation data: Preliminary precision and accuracy assessment , 2006 .

[26]  J. Clague,et al.  Elevation changes (1949–1995) of Black Rapids Glacier, Alaska, derived from a multi-baseline InSAR DEM and historical maps , 2010, Journal of Glaciology.

[27]  Frank Paul,et al.  Calculation of glacier elevation changes with SRTM: is there an elevation-dependent bias? , 2008, Journal of Glaciology.

[28]  T. Tadono,et al.  Comparison of multiple glacier inventories with a new inventory derived from high-resolution ALOS imagery in the Bhutan Himalaya , 2016 .

[29]  Andreas Kääb,et al.  Glacier Volume Changes Using ASTER Satellite Stereo and ICESat GLAS Laser Altimetry. A Test Study on EdgeØya, Eastern Svalbard , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Scott B. Luthcke,et al.  Estimation of ICESat intercampaign elevation biases from comparison of lidar data in East Antarctica , 2013 .

[31]  T. Bolch,et al.  The Randolph Glacier inventory: a globally complete inventory of glaciers , 2014 .

[32]  Duncan J. Wingham,et al.  Importance of seasonal and annual layers in controlling backscatter to radar altimeters across the percolation zone of an ice sheet , 2006 .

[33]  C. Werner,et al.  Estimation of Arctic glacier motion with satellite L-band SAR data , 2008 .

[34]  Adrian A. Borsa,et al.  A range correction for ICESat and its potential impact on ice-sheet mass balance studies , 2013 .

[35]  Ian Joughin,et al.  An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery , 2016 .

[36]  M. Zemp,et al.  Evaluating volumetric glacier change methods using airborne laser scanning data , 2014 .

[37]  Solveig H. Winsvold,et al.  A new glacier inventory for the Jostedalsbreen region, Norway, from Landsat TM scenes of 2006 and changes since 1966 , 2011, Annals of Glaciology.

[38]  Gerhard Krieger,et al.  Definition of ICESat Selection Criteria for Their Use as Height References for TanDEM-X , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[39]  A. Arendt,et al.  A new semi-automatic approach for dividing glacier complexes into individual glaciers , 2013, Journal of Glaciology.

[40]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[41]  Angelika Humbert,et al.  Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2 , 2014 .

[42]  Duncan J. Wingham,et al.  On the recent elevation changes at the Flade Isblink Ice Cap, northern Greenland , 2011 .

[43]  Achim Roth,et al.  Operational TanDEM-X DEM calibration and first validation results , 2012 .

[44]  T. Bolch,et al.  Landsat-based inventory of glaciers in western Canada, 1985-2005 , 2010 .

[45]  U. Kamp,et al.  Inventory of glaciers in mongolia, derived from landsat imagery from 1989 to 2011 , 2015 .

[46]  Andreas Kääb,et al.  The new remote-sensing-derived Swiss glacier inventory: I. Methods , 2002, Annals of Glaciology.

[47]  Matthew E. Pritchard,et al.  Satellite-derived volume loss rates and glacier speeds for the Juneau Icefield, Alaska , 2014 .

[48]  Dorothy K. Hall,et al.  Reflectances of glaciers as calculated using Landsat-5 Thematic Mapper data , 1988 .

[49]  A. Kääb,et al.  ICESat laser altimetry over small mountain glaciers , 2016 .

[50]  B. Menounos,et al.  Recent volume loss of British Columbian glaciers, Canada , 2007 .

[51]  Claudia Notarnicola,et al.  A Comparison of Pixel- and Object-Based Glacier Classification With Optical Satellite Images , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[52]  Bertil Magnusson,et al.  Understanding the meaning of accuracy, trueness and precision , 2007 .

[53]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[54]  Y. Arnaud,et al.  Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas , 2012, Nature.

[55]  A. Luckman,et al.  Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking , 2009, Journal of Glaciology.

[56]  Duncan J. Wingham,et al.  A Comparison of Recent Elevation Change Estimates of the Devon Ice Cap as Measured by the ICESat and EnviSAT Satellite Altimeters , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Siri Jodha Singh Khalsa,et al.  Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA , 2009, Annals of Glaciology.

[58]  W. Krabill,et al.  Penetration depth of interferometric synthetic‐aperture radar signals in snow and ice , 2001, Geophysical Research Letters.

[59]  Andreas Kääb,et al.  Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8 , 2016, Remote. Sens..

[60]  F. Paul,et al.  Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results , 2012 .

[61]  William F. Manley,et al.  Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes , 2007 .

[62]  Andreas Kääb,et al.  Locally adaptive template sizes for matching repeat images of Earth surface mass movements , 2012 .

[63]  Andrew G. Fountain,et al.  Glacier change (1958-1998) in the North Cascades National Park Complex, Washington, USA , 2006 .

[64]  Christiane Schmullius,et al.  Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape , 2012, Remote. Sens..

[65]  Jeffrey S. Kargel,et al.  Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project , 2007, Comput. Geosci..

[66]  S. Leprince,et al.  Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment , 2008 .

[67]  Di Wang,et al.  Modeling Glacier Elevation Change from DEM Time Series , 2015, Remote. Sens..

[68]  A. Lambrecht,et al.  Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory , 2007, Annals of Glaciology.

[69]  J. Aitken Glacier Motion , 1873, Nature.

[70]  Edward Hanna,et al.  Snowfall-Driven Growth in East Antarctic Ice Sheet Mitigates Recent Sea-Level Rise , 2005, Science.

[71]  P. Chevallier,et al.  Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India) , 2007 .

[72]  Finnur Pálsson,et al.  Glacier topography and elevation changes derived from Pléiades sub-meter stereo images , 2014 .

[73]  Urs Wegmüller,et al.  Glacier motion estimation using SAR offset-tracking procedures , 2002, IEEE Trans. Geosci. Remote. Sens..

[74]  M. R. van den Broeke,et al.  Dynamic thinning of glaciers on the Southern Antarctic Peninsula , 2015, Science.

[75]  Ron Kwok,et al.  Measurement of ice-sheet topography using satellite-radar interferometry , 1996 .

[76]  T. R. Lauknes,et al.  The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products , 2015 .

[77]  T. Bolch,et al.  Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~ 1975 and 1999 using Hexagon KH-9 imagery , 2015 .

[78]  R. Bindschadler,et al.  Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893-2001) , 2003 .

[79]  Felix Morsdorf,et al.  Uncertainty assessment of multi-temporal airborne laser scanning data: A case study on an Alpine glacier , 2012 .

[80]  M. R. van den Broeke,et al.  A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 , 2013, Science.

[81]  P. Holmlund,et al.  Historically unprecedented global glacier decline in the early 21st century , 2015 .

[82]  Ykealo Araya,et al.  A comparison of pixel and object-based land cover classification. A case study of the Asmara region, Eritrea , 2008 .

[83]  Adrian A. Borsa,et al.  Assessment of ICESat performance at the salar de Uyuni, Bolivia , 2005 .

[84]  P. Gong,et al.  Earth science applications of ICESat/GLAS: a review , 2011 .

[85]  Sébastien Leprince,et al.  Influence of camera distortions on satellite image registration and change detection applications , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[86]  V. Hochschild,et al.  Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry , 2013 .

[87]  Nico Mölg,et al.  Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data , 2013 .

[88]  Richard R. Forster,et al.  Surge dynamics on Bering Glacier, Alaska, in 2008–2011 , 2012 .

[89]  A. Kääb,et al.  Mass-balance reconstruction for Glacier No. 354, Tien Shan, from 2003 to 2014 , 2016, Annals of Glaciology.

[90]  Y. Arnaud,et al.  Biases of SRTM in high‐mountain areas: Implications for the monitoring of glacier volume changes , 2006 .

[91]  Marc Bernard,et al.  SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007-2009) , 2008 .

[92]  Roger G. Barry,et al.  Global Land Ice Measurements from Space , 2004 .

[93]  Frank Paul,et al.  Comparison of TM Derived Glacier Areas With Higher Resolution Data Sets , 2001 .

[94]  U. Wegmuller,et al.  Ionospheric Electron Concentration Effects on SAR and INSAR , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[95]  Franz J. Meyer,et al.  Using L-band SAR coherence to delineate glacier extent , 2010 .

[96]  Francesco Casu,et al.  Detection of glaciers displacement time-series using SAR , 2016 .

[97]  T. Bolch,et al.  A new satellite-derived glacier inventory for western Alaska , 2010, Annals of Glaciology.

[98]  N. Gourmelen,et al.  Deriving large-scale glacier velocities from a complete satellite archive: Application to the Pamir–Karakoram–Himalaya , 2015 .

[99]  U. Herzfeld,et al.  Spatiotemporal mapping of a large mountain glacier from CryoSat-2 altimeter data: surface elevation and elevation change of Bering Glacier during surge (2011–2014) , 2016 .

[100]  Koji Fujita,et al.  The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers , 2014 .

[101]  Matthew E. Pritchard,et al.  Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile , 2012 .

[102]  Martin Funk,et al.  Short-term velocity variations on Hansbreen, a tidewater glacier in Spitsbergen , 2004, Journal of Glaciology.

[103]  Nico Mölg,et al.  The first complete inventory of the local glaciers and ice caps on Greenland , 2012 .

[104]  Y. Arnaud,et al.  Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011 , 2013 .

[105]  Willem Jan van de Berg,et al.  A high‐resolution record of Greenland mass balance , 2016 .

[106]  Eric Rignot,et al.  Contribution of the Patagonia Icefields of South America to Sea Level Rise , 2003, Science.

[107]  R. Scharroo,et al.  Antarctic elevation change from 1992 to 1996 , 1998, Science.

[108]  Andreas Kääb,et al.  A new DEM of the Austfonna ice cap by combining differential SAR interferometry with ICESat laser altimetry , 2012 .

[109]  N. Barrand,et al.  Acceleration in thinning rate on western Svalbard glaciers , 2007 .

[110]  T. Bolch,et al.  Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data , 2015 .

[111]  Michael E. Schaepman,et al.  Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land , 2012 .

[112]  Sebastian B. Simonsen,et al.  Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density , 2011 .

[113]  Chloé Barboux,et al.  The New Swiss Glacier Inventory SGI2010: Relevance of Using High-Resolution Source Data in Areas Dominated by Very Small Glaciers , 2014 .

[114]  Andreas Kääb,et al.  Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking , 2014 .

[115]  Pedro Skvarca,et al.  Recent behaviour of Glaciar Upsala, a fast-flowing calving glacier in Lago Argentino, southern Patagonia , 2003, Annals of Glaciology.

[116]  Helmut Rott,et al.  The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations , 2015, Remote. Sens..

[117]  A. Gruen,et al.  Least squares 3D surface and curve matching , 2005 .

[118]  Duncan J. Wingham,et al.  Increased ice losses from Antarctica detected by CryoSat‐2 , 2014 .

[119]  Solveig H. Winsvold,et al.  On the accuracy of glacier outlines derived from remote-sensing data , 2013, Annals of Glaciology.

[120]  A. Kääb,et al.  Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change , 2011 .

[121]  R. Forsberg,et al.  Mass balance of the Greenland ice sheet - a study of ICESat data, surface density and firn compaction modelling , 2010 .

[122]  Thomas Flament,et al.  Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry , 2012, Journal of Glaciology.

[123]  A. Vieli,et al.  Rock glaciers on the run – understanding rock glacier landform evolution and recent changes from numerical flow modeling , 2016 .

[124]  Michael P. Bishop,et al.  Glacier velocities across the central Karakoram , 2009, Annals of Glaciology.

[125]  Matthew E. Pritchard,et al.  Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012 , 2012 .

[126]  R. Forsberg,et al.  Mass changes in Arctic ice caps and glaciers: implications of regionalizing elevation changes , 2013 .

[127]  Christopher Nuth,et al.  Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry , 2010 .

[128]  G. Østrem Rock glaciers and ice-cored moraines, a reply to D. Barsch. , 1971 .

[130]  Niklas Neckel,et al.  Estimation of Mass Balance of the Grosser Aletschgletscher, Swiss Alps, from ICESat Laser Altimetry Data and Digital Elevation Models , 2014, Remote. Sens..

[131]  David E. Shean,et al.  Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington, using terrestrial radar interferometry , 2015 .

[132]  Y. Arnaud,et al.  Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing , 2012 .

[133]  K. Langley,et al.  CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps , 2015 .