Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain
暂无分享,去创建一个
Fei Li | Rainer Laudien | Georg Bareth | Martin Gnyp | Yuxin Miao | Wolfgang Koppe | Xinping Chen | Victoria I. S. Lenz-Wiedemann | Simon D. Hennig | Liangliang Jia | Fusuo Zhang | Fei Li | Y. Miao | Xin-ping Chen | Fusuo Zhang | W. Koppe | G. Bareth | M. Gnyp | L. Jia | V. Lenz-Wiedemann | R. Laudien | S. Hennig
[1] A. Gitelson,et al. Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm , 1996 .
[2] U. Meier,et al. Growth stages of mono- and dicotyledonous plants , 1997 .
[3] Marvin E. Bauer,et al. Effects of nitrogen fertilizer on growth and reflectance characteristics of winter wheat , 1986 .
[4] David B. Lobell,et al. Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties , 2003 .
[5] S. M. Jong,et al. The Importance of Scale in Object-based Mapping of Vegetation Parameters with Hyperspectral Imagery , 2007 .
[6] Robert A. Neville,et al. Preprocessing of EO-1 Hyperion data , 2006 .
[7] N. Oppelt,et al. Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data , 2004 .
[8] P. Thenkabail,et al. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .
[9] Andrew K. Skidmore,et al. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression , 2007, Int. J. Appl. Earth Obs. Geoinformation.
[10] Fei Li,et al. Multi-Temporal Hyperspectral and Radar Remote Sensing for Estimating Winter Wheat Biomass in the North China Plain , 2012 .
[11] N. Broge,et al. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .
[12] J. A. Schell,et al. Monitoring vegetation systems in the great plains with ERTS , 1973 .
[13] R. M. Hoffer,et al. Biomass estimation on grazed and ungrazed rangelands using spectral indices , 1998 .
[14] Erich-Christian Oerke,et al. Precision Crop Protection - the Challenge and Use of Heterogeneity , 2014 .
[15] Y. Miao,et al. Evaluating Multispectral and Hyperspectral Satellite Remote Sensing Data for Estimating Winter Wheat Growth Parameters at Regional Scale in the North China Plain , 2010 .
[16] D. Lu. The potential and challenge of remote sensing‐based biomass estimation , 2006 .
[17] A. Huete,et al. A Modified Soil Adjusted Vegetation Index , 1994 .
[18] G. Guyot,et al. Utilisation de la Haute Resolution Spectrale pour Suivre L'etat des Couverts Vegetaux , 1988 .
[19] Sebastian Kipp,et al. High-throughput phenotyping early plant vigour of winter wheat , 2014 .
[20] Alfredo Huete,et al. Advances in hyperspectral remote sensing of vegetation and agricultural croplands: Chapter 1 , 2011 .
[21] K. Itten,et al. Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats , 2011 .
[22] Michael E. Schaepman,et al. Using spectral information from the NIR water absorption features for the retrieval of canopy water content , 2008, Int. J. Appl. Earth Obs. Geoinformation.
[23] Yuxin Miao,et al. Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn , 2008, Precision Agriculture.
[24] Michael E. Schaepman,et al. Estimating canopy water content using hyperspectral remote sensing data , 2010, Int. J. Appl. Earth Obs. Geoinformation.
[25] L. D. Miller,et al. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado , 1972 .
[26] Wang Futang,et al. Monitoring winter wheat growth in North China by combining a crop model and remote sensing data , 2008 .
[27] John R. Miller,et al. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy , 2005 .
[28] Georg Bareth,et al. GIS- and RS-based spatial decision support: structure of a spatial environmental information system (SEIS) , 2009, Int. J. Digit. Earth.
[29] S. Ustin,et al. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages , 2014 .
[30] J. Peñuelas,et al. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies , 2000 .
[31] R.E.E. Jongschaap,et al. Imaging spectrometry for agricultural applications , 2002 .
[32] M. A. Moreira,et al. Hyperspectral field reflectance measurements to estimate wheat grain yield and plant height , 2006 .
[33] Lei Ji,et al. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements , 2012, Int. J. Appl. Earth Obs. Geoinformation.
[34] John R. Miller,et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .
[35] Juan Pedro Ferrio,et al. Assessment of durum wheat yield using visible and near-infrared reflectance spectra of canopies , 2005 .
[36] Lalit Kumar,et al. Imaging Spectrometry and Vegetation Science , 2001 .
[37] Georg Bareth,et al. Analysis of crop reflectance for estimating biomass in rice canopies at different phenological stages , 2013 .
[38] Josep Peñuelas,et al. Visible and near-infrared reflectance techniques for diagnosing plant physiological status , 1998 .
[39] Weixing Cao,et al. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice , 2008, Int. J. Appl. Earth Obs. Geoinformation.
[40] A. Huete,et al. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission , 2013 .
[41] Shusen Wang,et al. Remote sensing of grassland–shrubland vegetation water content in the shortwave domain , 2006 .
[42] Helge Aasen,et al. Automated hyperspectral vegetation index retrieval from multiple correlation matrices with hypercor , 2014 .
[43] Georg Bareth,et al. Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages , 2010, Precision Agriculture.
[44] John R. Miller,et al. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model , 2010 .
[45] Ting Li,et al. Estimating regional heavy metal concentrations in rice by scaling up a field-scale heavy metal assessment model , 2012, Int. J. Appl. Earth Obs. Geoinformation.
[46] Fei Li,et al. Estimating N status of winter wheat using a handheld spectrometer in the North China Plain , 2008 .
[47] Huajun Tang,et al. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China , 2008, Int. J. Appl. Earth Obs. Geoinformation.
[48] William R. Raun,et al. Spectral Reflectance to Estimate Genetic Variation for In-Season Biomass, Leaf Chlorophyll, and Canopy Temperature in Wheat , 2006 .
[49] N. M. Kelly,et al. Spectral absorption features as indicators of water status in coast live oak ( Quercus agrifolia ) leaves , 2003 .
[50] G. Rondeaux,et al. Optimization of soil-adjusted vegetation indices , 1996 .
[51] P. Curran. Remote sensing of foliar chemistry , 1989 .
[52] Wei Gao,et al. Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions , 2009 .
[53] A. Huete. A soil-adjusted vegetation index (SAVI) , 1988 .