Statistical methods for the analysis of covariance and spatio-temporal models

A new hierarchical model is proposed for the analysis of covariance with random, unequal variances. Bayesian inference for the new model depends upon uncertainty in the degrees of freedom for a chi-squared distribution. The convergence of MCMC is validated by extremely accurate Laplacian approximations. Practical applications include neuropsychological tests in offender profiling and nutrition data. As a special case, the parallel line model with equal variances is considered, and alternatives to the F-test for the equality of the group effects, including Bayes factors, are investigated. In the final chapter, a self-similarity spatio-temporal model for the pressures of oil wells in an Alaskan oil field is considered, and our Bayesian techniques are extended to this situation with a view towards future interdisciplinary research.

[1]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[2]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[3]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  A. Raftery,et al.  How Many Iterations in the Gibbs Sampler , 1991 .

[6]  V. Johnson Studying Convergence of Markov Chain Monte Carlo Algorithms Using Coupled Sample Paths , 1996 .

[7]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[8]  Industry-wide expense standards using random coefficient regression , 1984 .

[9]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[10]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[11]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[12]  John S. J. Hsu Generalized Laplacian approximations in Bayesian inference , 1995 .

[13]  Kenny Q. Ye Statistical Tests for Mixed Linear Models , 2000, Technometrics.

[14]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[15]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[16]  A. Gelfand,et al.  Efficient parametrisations for normal linear mixed models , 1995 .

[17]  D. Quade,et al.  Nonparametric analysis of covariance by matching. , 1982, Biometrics.

[18]  A. Rukhin Bayes and Empirical Bayes Methods for Data Analysis , 1997 .

[19]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[20]  Sylvia Richardson,et al.  Markov chain concepts related to sampling algorithms , 1995 .

[21]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[22]  Mike Talbot,et al.  A bayesian approach to regional and local-area prediction from crop variety trials , 2002 .

[23]  Lee W. Schruben,et al.  Optimal Tests for Initialization Bias in Simulation Output , 1983, Oper. Res..

[24]  G. Koch,et al.  A review of some statistical methods for covariance analysis of categorical data. , 1982, Biometrics.

[25]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[26]  H. Smith Interpretation of Adjusted Treatment Means and Regressions in Analysis of Covariance , 1957 .

[27]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[28]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[29]  Robert C. Blattberg,et al.  Shrinkage Estimation of Price and Promotional Elasticities: Seemingly Unrelated Equations , 1991 .

[30]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[31]  Lee W. Schruben,et al.  Detecting Initialization Bias in Simulation Output , 1982, Oper. Res..

[32]  H. Jeffreys Some Tests of Significance, Treated by the Theory of Probability , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  R. Katz On Some Criteria for Estimating the Order of a Markov Chain , 1981 .

[34]  Joong-Kweon Sohn,et al.  Convergence Diagnostics for the Gibbs Sampler , 1996 .

[35]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[36]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[37]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[38]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[39]  Brian S. Yandell,et al.  Practical Data Analysis for Designed Experiments , 1998 .

[40]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[41]  Julia Mortera,et al.  Default Bayes Factors for Nonnested Hypothesis Testing , 1999 .

[42]  J. S. Hunter,et al.  Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. , 1979 .

[43]  Tom Leonard,et al.  An Investigation of the F‐Test Procedure as an Estimation Short‐Cut , 1976 .

[44]  David J. Spiegelhalter,et al.  Introducing Markov chain Monte Carlo , 1995 .

[45]  A. Atkinson Posterior probabilities for choosing a regression model , 1978 .

[46]  C. R. Henderson,et al.  Analysis of covariance in the mixed model: higher-level, nonhomogeneous, and random regressions. , 1982, Biometrics.

[47]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[48]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[49]  Melvin R. Novick,et al.  Bayesian Full Rank Marginalization for Two-Way Contingency Tables , 1986 .

[50]  M. Stone Asymptotics for and against cross-validation , 1977 .

[51]  Nozer D. Singpurwalla,et al.  Understanding the Kalman Filter , 1983 .

[52]  T. Speed,et al.  Characterizing a joint probability distribution by conditionals , 1993 .

[53]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[54]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[55]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[56]  Bin Yu,et al.  Looking at Markov samplers through cusum path plots: a simple diagnostic idea , 1998, Stat. Comput..

[57]  P. McCullagh,et al.  Some aspects of analysis of covariance. , 1982, Biometrics.

[58]  Irma J. Coons,et al.  The Analysis of Covariance as a Missing Plot Technique , 1957 .

[59]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[60]  A. O'Hagan,et al.  Fractional Bayes factors for model comparison , 1995 .

[61]  C. Aitken,et al.  Estimation of Quantities of Drugs Handled and the Burden of Proof , 1997 .

[62]  H. Daniels Saddlepoint Approximations in Statistics , 1954 .

[63]  Stephen P. Brooks Quantitative convergence assessment for Markov chain Monte Carlo via cusums , 1998, Stat. Comput..

[64]  W. G. Cochran Analysis of covariance: Its nature and uses. , 1957 .

[65]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[66]  P. W. Lane,et al.  Analysis of covariance and standardization as instances of prediction. , 1982, Biometrics.

[67]  C. Robert,et al.  Discretization of Continuous Markov Chains and Markov Chain Monte Carlo Convergence Assessment , 1998 .

[68]  A. F. Smith,et al.  Bayes estimates in one-way and two-way models , 1973 .

[69]  S. Decoene Offender profiling: Theory, research and practice , 1998 .

[70]  D. Spiegelhalter,et al.  Bayes Factors and Choice Criteria for Linear Models , 1980 .

[71]  R. Kass,et al.  Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .

[72]  N. Daéid,et al.  Statistical differences between offender groups , 1998 .

[73]  D. Spiegelhalter,et al.  Bayes Factors for Linear and Log‐Linear Models with Vague Prior Information , 1982 .

[74]  G. C. Tiao,et al.  Bayesian Estimation of Means for the Random Effect Model , 1968 .

[75]  W. Federer VARIANCE AND COVARIANCE ANALYSES FOR UNBALANCED CLASSIFICATIONS , 1957 .

[76]  H. A. David First (?) Occurrence of Common Terms in Mathematical Statistics , 1995 .

[77]  M. Zelen THE ANALYSIS OF COVARIANCE FOR INCOMPLETE BLOCK DESIGNS , 1957 .

[78]  Ian G. Main,et al.  Statistical physics, seismogenesis, and seismic hazard , 1996 .

[79]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[80]  L. Tierney,et al.  Fully Exponential Laplace Approximations to Expectations and Variances of Nonpositive Functions , 1989 .

[81]  G. N. Wilkinson The Analysis of Covariance with Incomplete Data , 1957 .

[82]  J. F. Crook,et al.  The Bayes/Non-Bayes Compromise and the Multinomial Distribution , 1974 .

[83]  H. Akaike A Bayesian analysis of the minimum AIC procedure , 1978 .

[84]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[85]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[86]  A. Zellner,et al.  Gibbs Sampler Convergence Criteria , 1995 .

[87]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[88]  John S. J. Hsu,et al.  Bayesian Marginal Inference , 1989 .

[89]  A. Koehler,et al.  A Comparison of the Akaike and Schwarz Criteria for Selecting Model Order , 1988 .

[90]  Shayle R. Searle,et al.  Linear Models for Unbalanced Data. , 1990 .

[91]  A. Cohen To Pool or Not to Pool in Hypothesis Testing , 1974 .

[92]  Murray Aitkin The calibration of P-values, posterior Bayes factors and the AIC from the posterior distribution of the likelihood , 1997, Stat. Comput..

[93]  L. Tierney,et al.  Approximate marginal densities of nonlinear functions , 1989 .

[94]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[95]  Irwin Guttman,et al.  Bayesian Methods for Variance Component Models , 1996 .

[96]  D. Scott,et al.  Covariance analyses with heterogeneity of slopes in fixed models. , 1982, Biometrics.

[97]  Tom Leonard A Bayesian Approach to the Linear Model with Unequal Variances , 1975 .

[98]  J. F. Crook,et al.  The Powers and Strengths of Tests for Multinomials and Contingency Tables , 1982 .

[99]  Tom Leonard Some alternative approaches to multiparameter estimation , 1976 .

[100]  J. Besag,et al.  Bayesian analysis of agricultural field experiments , 1999 .

[101]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[102]  Adjustment in covariance when one factor affects the covariate. , 1982, Biometrics.