A comparison of algorithms for the triangulation refinement problem

The triangulation refinement problem has become an important issue in engineering applications. It can be formulated in general terms as follows: given a valid, non-degenerate triangulation, construct a locally refined triangulation, such that the smallest (or the largest) angle is bounded. Two algorithms to solve this problem are considered: a Delaunay refinement algorithm and Rivara refinement algorithm based on the longest side bisection of triangles. The cost of these algorithms, their properties and geometrical characteristics are discussed. Several test problems to compare the practical behavior of these algorithms are also included.