RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE.

Abstract The probability distributions (defined in an ergodic sense) of various aggregates of random convex polygons determined by the standard isotropic Poisson line process in the plane are investigated.

[1]  A. Rényi,et al.  ZufÄllige konvexe Polygone in einem Ringgebiet , 1968 .

[2]  R. E. Miles Poisson flats in Euclidean spaces Part I: A finite number of random uniform flats , 1969, Advances in Applied Probability.

[3]  S. Goudsmit,et al.  Random Distribution of Lines in a Plane , 1945 .

[4]  P. I. Richards,et al.  AVERAGES FOR POLYGONS FORMED BY RANDOM LINES. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. E. Miles On the homogeneous planar Poisson point process , 1970 .

[6]  R. E. Miles ISOTROPIC RANDOM SIMPLICES , 1971 .

[7]  R. E. Miles Poisson flats in Euclidean spaces Part II: Homogeneous Poisson flats and the complementary theorem , 1971, Advances in Applied Probability.

[8]  M. S. Bartlett The Spectral Analysis of Line Processes , 1967 .

[9]  W. Schmidt Some results in probabilistic geometry , 1968 .

[10]  M. S. Bartlett,et al.  An introduction to stochastic processes, with special reference to methods and applications , 1955 .

[11]  Peter C. C. Wang,et al.  Nonhomogeneous Poisson fields of random lines with applications to traffic flow , 1972 .

[12]  L. A. Santaló Introduction to integral geometry , 1953 .

[13]  R. E. Miles RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE, II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[14]  L. Santaló,et al.  Averages for polygons formed by random lines in Euclidean and hyperbolic planes , 1972, Journal of Applied Probability.