Proximal Giant Neurofilamentous Axonopathy in Mice Genetically Engineered to Resist Calpain and Caspase Cleavage of α-II Spectrin

[1]  P. Wong,et al.  Upregulation of Dpysl2 and Spna2 gene expression in the rat brain after ischemic stroke , 2009, Neurochemistry International.

[2]  D. Tshala-Katumbay,et al.  Probing mechanisms of axonopathy. Part II: Protein targets of 2,5-hexanedione, the neurotoxic metabolite of the aliphatic solvent n-hexane. , 2009, Toxicological sciences : an official journal of the Society of Toxicology.

[3]  D. Tshala-Katumbay,et al.  Probing mechanisms of axonopathy. Part I: Protein targets of 1,2-diacetylbenzene, the neurotoxic metabolite of aromatic solvent 1,2-diethylbenzene. , 2008, Toxicological sciences : an official journal of the Society of Toxicology.

[4]  M. Rasband,et al.  Spectrin and Ankyrin-Based Cytoskeletons at Polarized Domains in Myelinated Axons , 2008, Experimental biology and medicine.

[5]  R. Hayes,et al.  Calpain- and caspase-mediated alphaII-spectrin and tau proteolysis in rat cerebrocortical neuronal cultures after ecstasy or methamphetamine exposure. , 2007, The international journal of neuropsychopharmacology.

[6]  Y. Colin,et al.  A Mutant αII-spectrin Designed to Resist Calpain and Caspase Cleavage Questions the Functional Importance of This Process in Vivo* , 2007, Journal of Biological Chemistry.

[7]  T. Steitz,et al.  Structure of the Calmodulin αII-Spectrin Complex Provides Insight into the Regulation of Cell Plasticity* , 2006, Journal of Biological Chemistry.

[8]  F. Tortella,et al.  Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. , 2006, The Biochemical journal.

[9]  T. Boyer,et al.  Identification of a short form of ubiquitin-specific protease 3 that is a repressor of rat glutathione S-transferase gene expression. , 2006, The Biochemical journal.

[10]  A. Lajtha,et al.  Protein content of various regions of rat brain and adult and aging human brain , 1992, AGE.

[11]  R. Hayes,et al.  Concurrent calpain and caspase-3 mediated proteolysis of alpha II-spectrin and tau in rat brain after methamphetamine exposure: a similar profile to traumatic brain injury. , 2005, Life sciences.

[12]  A. DeCaprio,et al.  Protein adduct formation as a molecular mechanism in neurotoxicity. , 2005, Toxicological sciences : an official journal of the Society of Toxicology.

[13]  A. Sikorski,et al.  Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells , 2005, Cellular and Molecular Life Sciences CMLS.

[14]  D. Tshala-Katumbay,et al.  A new murine model of giant proximal axonopathy , 2005, Acta Neuropathologica.

[15]  R. Neumar,et al.  Proteins released from degenerating neurons are surrogate markers for acute brain damage , 2004, Neurobiology of Disease.

[16]  X. Puente,et al.  Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors , 2004, Biological chemistry.

[17]  R. L. Hayes,et al.  Maitotoxin Induces Calpain But Not Caspase-3 Activation and Necrotic Cell Death in Primary Septo-Hippocampal Cultures , 1999, Neurochemical Research.

[18]  S. Hirai,et al.  Axonal swellings in the corticospinal tracts in amyotrophic lateral sclerosis , 2004, Acta Neuropathologica.

[19]  R. Neumar,et al.  Cross-talk between Calpain and Caspase Proteolytic Systems During Neuronal Apoptosis* , 2003, The Journal of Biological Chemistry.

[20]  Ammar Al-Chalabi,et al.  Neurofilaments and neurological disease. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[21]  J. Geddes,et al.  Evaluation of conditions for calpain inhibition in the rat spinal cord: effective postinjury inhibition with intraspinal MDL28170 microinjection. , 2003, Journal of neurotrauma.

[22]  P. Spencer,et al.  Aromatic as well as aliphatic hydrocarbon solvent axonopathy. , 2002, International journal of hygiene and environmental health.

[23]  M. S. Kim,et al.  1,2-diacetylbenzene, the neurotoxic metabolite of a chromogenic aromatic solvent, induces proximal axonopathy. , 2001, Toxicology and applied pharmacology.

[24]  Jeremy J. Flint,et al.  Accumulation of non‐erythroid αII‐spectrin and calpain‐cleaved αII‐spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats , 2001 .

[25]  J. Sangerman,et al.  Spectrin (βSpIIΣ1) is an essential component of synaptic transmission , 2000, Brain Research.

[26]  Kevin K. W Wang,et al.  Calpain and caspase: can you tell the difference? , 2000, Trends in Neurosciences.

[27]  J. Sangerman,et al.  Spectrin (betaSpIIsigma1) is an essential component of synaptic transmission. , 2000, Brain research.

[28]  R. Gilbertsen,et al.  Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. , 1996, The Biochemical journal.

[29]  D. Anthony,et al.  Pyrrole oxidation and protein cross-linking as necessary steps in the development of gamma-diketone neuropathy. , 1988, Chemical research in toxicology.

[30]  A. DeCaprio,et al.  Mechanism of formation and quantitation of imines, pyrroles, and stable nonpyrrole adducts in 2,5-hexanedione-treated protein. , 1987, Molecular pharmacology.

[31]  Michel Baudry,et al.  Brain spectrin, calpain and long-term changes in synaptic efficacy , 1987, Brain Research Bulletin.

[32]  D. Ap n-Hexane neurotoxicity: a mechanism involving pyrrole adduct formation in axonal cytoskeletal protein. , 1987 .

[33]  A. Hirano,et al.  Fine Structural Observations of Neurofilamentous Changes in Amyotrophic Lateral Sclerosis , 1984, Journal of neuropathology and experimental neurology.

[34]  S. Carpenter,et al.  Neurofibrillary axonal swellings and amyotrophic lateral sclerosis , 1984, Journal of the Neurological Sciences.