Configuration of the Earth’s Magnetotail Current Sheet

The spatial scale and intensity of Earth’s magnetotail current sheet determine the magnetotail configuration, which is critical to one of the most energetically powerful phenomena in the Earth’s magnetosphere, substorms. In the absence of statistical information about plasma currents, theories of the magnetotail current sheets were mostly based on the isotropic stress balance. Such models suggest that thin current sheets cannot be long and should have strong plasma pressure gradients along the magnetotail. Using Magnetospheric Multiscale and THEMIS observations and global simulations, we explore realistic configuration of the magnetotail current sheet. We find that the magnetotail current sheet is thinner than expected from theories that assume isotropic stress balance. Observed plasma pressure gradients in thin current sheets are insufficiently strong (i.e., current sheets are too long) to balance the magnetic field line tension force. Therefore, pressure anisotropy is essential in the configuration of thin current sheets where instability precedes substorm onset.

[1]  C. Russell,et al.  Magnetotail reconnection onset caused by electron kinetics with a strong external driver , 2020, Nature Communications.

[2]  G. Reeves,et al.  Correlations Between Dispersive Alfvén Wave Activity, Electron Energization, and Ion Outflow in the Inner Magnetosphere , 2020, Geophysical Research Letters.

[3]  I. Vasko,et al.  A model of the current sheet in the Earth's magnetotail , 2020, Physics of Plasmas.

[4]  R. Walker,et al.  The Relation of N‐S Auroral Streamers to Auroral Expansion , 2020, Journal of Geophysical Research: Space Physics.

[5]  G. Lapenta,et al.  Multiscale MHD‐Kinetic PIC Study of Energy Fluxes Caused by Reconnection , 2020, Journal of Geophysical Research: Space Physics.

[6]  J. Johnson,et al.  Kinetic Alfvén Waves From Magnetotail to the Ionosphere in Global Hybrid Simulation Associated With Fast Flows , 2020, Journal of Geophysical Research: Space Physics.

[7]  V. Angelopoulos,et al.  Contribution of Anisotropic Electron Current to the Magnetotail Current Sheet as a Function of Location and Plasma Conditions , 2020, Journal of Geophysical Research: Space Physics.

[8]  V. Angelopoulos,et al.  Near-Earth Magnetotail Reconnection Powers Space Storms , 2019, Nature physics.

[9]  V. Merkin,et al.  Signatures of Nonideal Plasma Evolution During Substorms Obtained by Mining Multimission Magnetometer Data , 2019, Journal of Geophysical Research: Space Physics.

[10]  M. Velli,et al.  Explosive Magnetotail Activity , 2019, Space Science Reviews.

[11]  V. Angelopoulos,et al.  Ion Anisotropy in Earth's Magnetotail Current Sheet: Multicomponent Ion Population , 2019, Journal of Geophysical Research: Space Physics.

[12]  J. G. Sample,et al.  The Space Physics Environment Data Analysis System (SPEDAS) , 2019, Space Science Reviews.

[13]  H. Spence,et al.  Plasma Anisotropies and Currents in the Near‐Earth Plasma Sheet and Inner Magnetosphere , 2018, Journal of Geophysical Research: Space Physics.

[14]  V. Angelopoulos,et al.  On the Acceleration and Anisotropy of Ions Within Magnetotail Dipolarizing Flux Bundles , 2018 .

[15]  J. Birn,et al.  Ion velocity distributions in dipolarization events: Distributions in the central plasma sheet , 2017 .

[16]  S. Wing,et al.  Formation and transport of entropy structures in the magnetotail simulated with a 3‐D global hybrid code , 2017 .

[17]  V. Angelopoulos,et al.  Characteristics of ion distribution functions in dipolarizing flux bundles: Event studies , 2017 .

[18]  Ying Lin,et al.  Hall effect control of magnetotail dawn‐dusk asymmetry: A three‐dimensional global hybrid simulation , 2016 .

[19]  R. Walker,et al.  Forces driving fast flow channels, dipolarizations, and turbulence in the magnetotail , 2016 .

[20]  V. Merkin,et al.  Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation , 2016 .

[21]  A. Runov,et al.  Properties of current sheet thinning at x ∼− 10 to −12 RE , 2016 .

[22]  V. Angelopoulos,et al.  On the radial force balance in the quiet time magnetotail current sheet , 2016 .

[23]  U. Gliese,et al.  Fast Plasma Investigation for Magnetospheric Multiscale , 2016 .

[24]  M. R. Stokes,et al.  The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission , 2016 .

[25]  Thomas E. Moore,et al.  Magnetospheric Multiscale Overview and Science Objectives , 2016 .

[26]  Wolfgang Baumjohann,et al.  The Magnetospheric Multiscale Magnetometers , 2016 .

[27]  S. Persyn,et al.  Hot Plasma Composition Analyzer for the Magnetospheric Multiscale Mission , 2016 .

[28]  R. Rankin,et al.  Electron trapping and acceleration by kinetic Alfven waves in the inner magnetosphere , 2015 .

[29]  C. Chaston,et al.  Ion temperature effects on magnetotail Alfvén wave propagation and electron energization , 2015 .

[30]  A. Runov,et al.  Average thermodynamic and spectral properties of plasma in and around dipolarizing flux bundles , 2015 .

[31]  R. Nakamura,et al.  Two‐dimensional configuration of the magnetotail current sheet: THEMIS observations , 2015 .

[32]  Rumi Nakamura,et al.  Current Sheets in the Earth Magnetotail: Plasma and Magnetic Field Structure with Cluster Project Observations , 2015 .

[33]  J. Birn,et al.  Onset of reconnection in the near magnetotail: PIC simulations , 2014 .

[34]  Ying Lin,et al.  Investigation of storm time magnetotail and ion injection using three‐dimensional global hybrid simulation , 2014 .

[35]  R. Walker,et al.  Dipolarization and turbulence in the plasma sheet during a substorm: THEMIS observations and global MHD simulations , 2013 .

[36]  I. J. Rae,et al.  Sources of electron pitch angle anisotropy in the magnetotail plasma sheet , 2013 .

[37]  L. Zelenyi,et al.  Kinetic Structure of Current Sheets in the Earth Magnetotail , 2013 .

[38]  Wolfgang Baumjohann,et al.  Cluster observations of ∂Bz/∂x during growth phase magnetotail stretching intervals , 2013 .

[39]  V. Angelopoulos,et al.  Spatial distributions of ion pitch angle anisotropy in the near‐Earth magnetosphere and tail plasma sheet , 2013 .

[40]  D. Baker,et al.  Particle Acceleration in the Magnetotail and Aurora , 2012 .

[41]  Wolfgang Baumjohann,et al.  Proton/electron temperature ratio in the magnetotail , 2011 .

[42]  V. Angelopoulos,et al.  Substorm growth and expansion onset as observed with ideal ground-spacecraft THEMIS coverage , 2011 .

[43]  R. Nakamura,et al.  Embedded current sheets in the Earth’s magnetotail , 2011 .

[44]  H. Malova,et al.  Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration , 2011 .

[45]  C. Owen,et al.  Average magnetotail electron and proton pitch angle distributions from Cluster PEACE and CIS observations , 2011 .

[46]  R. Nakamura,et al.  Proton velocity distribution in thin current sheets: Cluster observations and theory of transient trajectories , 2010 .

[47]  R. Abiad,et al.  The THEMIS ESA Plasma Instrument and In-flight Calibration , 2008 .

[48]  I. J. Rae,et al.  Tail Reconnection Triggering Substorm Onset , 2008, Science.

[49]  U. Auster,et al.  First Results from the THEMIS Mission , 2008 .

[50]  Werner Magnes,et al.  The THEMIS Fluxgate Magnetometer , 2008 .

[51]  Vassilis Angelopoulos,et al.  The THEMIS Mission , 2008 .

[52]  N. Cramer Physics of Space Plasma Activity , 2007 .

[53]  Wolfgang Baumjohann,et al.  Thinning and stretching of the plasma sheet , 2007 .

[54]  Parvez N. Guzdar,et al.  Structure and dynamics of a new class of thin current sheets , 2006 .

[55]  Rumi Nakamura,et al.  Local structure of the magnetotail current sheet: 2001 Cluster observations , 2006 .

[56]  K. Schindler Physics of Space Plasma Activity: Quiescence , 2006 .

[57]  V. A. Sergeev,et al.  Quantitative magnetotail characteristics of different magnetospheric states , 2004 .

[58]  T. Fuller‐Rowell,et al.  Global Simulation of Magnetospheric Space Weather Effects of the Bastille Day Storm , 2001 .

[59]  M. El‐Alaoui Current disruption during November 24, 1996, substorm , 2001 .

[60]  Daniel N. Baker,et al.  Neutral line model of substorms: Past results and present view , 1996 .

[61]  Joachim Raeder,et al.  The structure of the distant geomagnetic tail during long periods of northward IMF , 1995 .

[62]  Christopher T. Russell,et al.  Structure of the tail plasma/current sheet at ∼11 RE and its changes in the course of a substorm , 1993 .

[63]  M. Ashour‐Abdalla,et al.  Shaping of the magnetotail from the mantle: Global and local structuring , 1993 .

[64]  C. Russell,et al.  Influences of solar wind parameters and geomagnetic activity on the tail lobe magnetic field: A statistical study , 1991 .

[65]  R. Wolf,et al.  On the balance of stresses in the plasma sheet , 1972 .

[66]  N. Ness The Earth's magnetic tail , 1965 .