Computational Understanding of Visual Interestingness Beyond Semantics

Understanding visual interestingness is a challenging task addressed by researchers in various disciplines ranging from humanities and psychology to, more recently, computer vision and multimedia. The rise of infographics and the visual information overload that we are facing today have given this task a crucial importance. Automatic systems are increasingly needed to help users navigate through the growing amount of visual information available, either on the web or our personal devices, for instance by selecting relevant and interesting content. Previous studies indicate that visual interest is highly related to concepts like arousal, unusualness, or complexity, where these connections are found based on psychological theories, user studies, or computational approaches. However, the link between visual interestingness and other related concepts has been only partially explored so far, for example, by considering only a limited subset of covariates at a time. In this article, we present a comprehensive survey on visual interestingness and related concepts, aiming to bring together works based on different approaches, highlighting controversies, and identifying links that have not been fully investigated yet. Finally, we present some open questions that may be addressed in future works. Our work aims to support researchers interested in visual interestingness and related subjective or abstract concepts, providing an in-depth overlook at state-of-the-art theories in humanities and methods in computational approaches, as well as providing an extended list of datasets.

[1]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[2]  P W Jackson,et al.  The person, the product, and the response: conceptual problems in the assessment of creativity. , 1965, Journal of personality.

[3]  Dirk Herrmann,et al.  The Compass Of Irony , 2016 .

[4]  Frank H. Mahnke,et al.  Color, Environment, and Human Response: An Interdisciplinary Understanding of Color and Its Use As a Beneficial Element in the Design of the Architectural Environment , 1996 .

[5]  M. Soleymani Travelogue Boredom Detection with Content Features , 2010 .

[6]  Stephen J. Vodanovich,et al.  The essence of boredom. , 1993 .

[7]  Luc Van Gool,et al.  Visual interestingness in image sequences , 2013, MM '13.

[8]  Daniel M. Romero,et al.  Influence and passivity in social media , 2010, ECML/PKDD.

[9]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[10]  W. A. Phillips On the distinction between sensory storage and short-term visual memory , 1974 .

[11]  Amy Beth Warriner,et al.  Norms of valence, arousal, and dominance for 13,915 English lemmas , 2013, Behavior Research Methods.

[12]  Kien A. Hua,et al.  Learning Perceptual Embeddings with Two Related Tasks for Joint Predictions of Media Interestingness and Emotions , 2018, ICMR.

[13]  K. Scherer,et al.  Appraisal processes in emotion. , 2003 .

[14]  R. Shepard Recognition memory for words, sentences, and pictures , 1967 .

[15]  Zhao Qi,et al.  A Paradigm for Building Generalized Models of Human Image Perception through Data Fusion , 2016 .

[16]  Samia Nefti-Meziani,et al.  Predicting the Valence of a Scene from Observers’ Eye Movements , 2015, PloS one.

[17]  Yue Gao,et al.  Predicting Personalized Emotion Perceptions of Social Images , 2016, ACM Multimedia.

[18]  Graeme Ritchie,et al.  Developing the Incongruity-Resolution Theory , 1999 .

[19]  Mike Van Duuren,et al.  Early aesthetic choices: Infant preferences for attractive premature infant faces , 2003 .

[20]  Ralph E. Reynolds,et al.  Effect of Interest on Attention and Learning , 1988 .

[21]  Hang Maxime Ung,et al.  Social Influence, Popularity and Interestingness of Online Contents , 2011, ICWSM.

[22]  Raffay Hamid,et al.  What makes an image popular? , 2014, WWW.

[23]  Bogdan Ionescu,et al.  LAPI at MediaEval 2017 - Predicting Media Interestingness , 2017, MediaEval.

[24]  Emmanuel Dellandréa,et al.  LIRIS-ACCEDE: A Video Database for Affective Content Analysis , 2015, IEEE Transactions on Affective Computing.

[25]  Yue Gao,et al.  Exploring Principles-of-Art Features For Image Emotion Recognition , 2014, ACM Multimedia.

[26]  D. Berlyne,et al.  COMPLEXITY AND INCONGRUITY VARIABLES AS DETERMINANTS OF EXPLORATORY CHOICE AND EVALUATIVE RATINGS. , 1963, Canadian journal of psychology.

[27]  Joost Duflou,et al.  Originality and Novelty: A Different Universe , 2012 .

[29]  Mohammad Soleymani,et al.  Analyzing and Predicting GIF Interestingness , 2016, ACM Multimedia.

[30]  William I. Gasarch,et al.  Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.

[31]  S. Tomkins Illuminating and Stimulating. (Book Reviews: Affect, Imagery, Consciousness. vol. 1, The Positive Affects) , 1963 .

[32]  Tsuhan Chen,et al.  A mixed bag of emotions: Model, predict, and transfer emotion distributions , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Vicente Ordonez,et al.  High level describable attributes for predicting aesthetics and interestingness , 2011, CVPR 2011.

[34]  Luc Van Gool,et al.  The Interestingness of Images , 2013, 2013 IEEE International Conference on Computer Vision.

[35]  Chokri Ben Amar,et al.  Deep Saliency: Prediction of Interestingness in Video with CNN , 2017, Visual Content Indexing and Retrieval with Psycho-Visual Models.

[36]  Allan Hanbury,et al.  Affective image classification using features inspired by psychology and art theory , 2010, ACM Multimedia.

[37]  P. A. Russell,et al.  Relationships between Aesthetic Response Scales Applied to Paintings , 1990 .

[38]  Thomas Hofmann,et al.  TrueSkill™: A Bayesian Skill Rating System , 2007 .

[39]  B. Fredrickson The role of positive emotions in positive psychology. The broaden-and-build theory of positive emotions. , 2001, The American psychologist.

[40]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[41]  Yan Ke,et al.  The Design of High-Level Features for Photo Quality Assessment , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[42]  Jianxiong Xiao,et al.  Memorability of Image Regions , 2012, NIPS.

[43]  A. Chen,et al.  An examination of situational interest and its sources. , 2001, The British journal of educational psychology.

[44]  D. Berlyne,et al.  Aesthetics and Psychobiology , 1975 .

[45]  Pirkko Oittinen,et al.  Naturalness and interestingness of test images for visual quality evaluation , 2011, Electronic Imaging.

[46]  Claire-Hélène Demarty,et al.  Multimodality and Deep Learning when Predicting Media Interestingness , 2017, MediaEval.

[47]  Mary Lou Maher,et al.  Evaluating creativity in humans, computers, and collectively intelligent systems , 2010, DESIRE.

[48]  Rutger C. M. E. Engels,et al.  Keeping Secrets from Parents: Advantages and Disadvantages of Secrecy in Adolescence , 2002 .

[49]  Balaji Padmanabhan,et al.  Unexpectedness as a Measure of Interestingness in Knowledge Discovery , 1999, Decis. Support Syst..

[50]  Thierry Pun,et al.  DEAP: A Database for Emotion Analysis ;Using Physiological Signals , 2012, IEEE Transactions on Affective Computing.

[51]  D. Rapaport Organization and Pathology of Thought: Selected Sources , 1965 .

[52]  Ronald A. Rensink,et al.  TO SEE OR NOT TO SEE: The Need for Attention to Perceive Changes in Scenes , 1997 .

[53]  Ming Ouhyoung,et al.  Personalized photograph ranking and selection system , 2010, ACM Multimedia.

[54]  Frédo Durand,et al.  Where Should Saliency Models Look Next? , 2016, ECCV.

[55]  D. E. Berlyne,et al.  Novelty, Uncertainty, Conflict, Complexity. , 1960 .

[56]  Luc Van Gool,et al.  Creating Summaries from User Videos , 2014, ECCV.

[57]  Xiangyang Xue,et al.  Understanding and Predicting Interestingness of Videos , 2013, AAAI.

[58]  P. Anderson More is different. , 1972, Science.

[59]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[60]  Fernando Fernández-Martínez,et al.  Comparing visual descriptors and automatic rating strategies for video aesthetics prediction , 2016, Signal Process. Image Commun..

[61]  L. Harris,et al.  Symmetrical decorations enhance the attractiveness of faces and abstract designs , 2006 .

[62]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[63]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[64]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  A. P. McGraw,et al.  Too Close for Comfort, or Too Far to Care? Finding Humor in Distant Tragedies and Close Mishaps , 2012, Psychological science.

[66]  Mats Sjöberg,et al.  MediaEval 2017 Predicting Media Interestingness Task , 2016, MediaEval.

[67]  Sam J. Maglio,et al.  Emotional category data on images from the international affective picture system , 2005, Behavior research methods.

[68]  Karen B. Schloss,et al.  Object color preferences , 2012 .

[69]  D E BERLYNE,et al.  Interest as a psychological concept. , 1949, The British journal of psychology. General section.

[70]  L. W. Kline The Psychology of Humor , 1907 .

[71]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[72]  Yuzhen Niu,et al.  Using Web Photos for Measuring Video Frame Interestingness , 2009, IJCAI.

[73]  P. Silvia Interest—The Curious Emotion , 2008 .

[74]  Miriam Redi,et al.  The beauty of capturing faces: Rating the quality of digital portraits , 2015, 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[75]  P. Ekman An argument for basic emotions , 1992 .

[76]  Stefan Winkler,et al.  Image complexity and spatial information , 2013, 2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX).

[77]  Shih-Fu Chang,et al.  Predicting Viewer Perceived Emotions in Animated GIFs , 2014, ACM Multimedia.

[78]  P. Silvia,et al.  Must interesting things be pleasant? A test of competing appraisal structures. , 2006, Emotion.

[79]  Marco Guerini,et al.  Exploring Image Virality in Google Plus , 2013, 2013 International Conference on Social Computing.

[80]  Josep Lluís de la Rosa i Esteva,et al.  How to Measure Memorability and Social Interestingness of Images: A Review , 2017, Int. J. Pattern Recognit. Artif. Intell..

[81]  P. König,et al.  The Contributions of Image Content and Behavioral Relevancy to Overt Attention , 2014, PloS one.

[82]  Akira Utsumi,et al.  Implicit Display Theory of Verbal Irony : Towards A Computational Model of Irony , 2005 .

[83]  Andrea Hopmeyer,et al.  Sociometric Popularity and Peer-Perceived Popularity , 1998 .

[84]  Graham Page,et al.  Creative determinants of viral video viewing , 2010 .

[85]  Lois B. Wexner The degree to which colors (hues) are associated with mood-tones. , 1954 .

[86]  Sameer Singh,et al.  Novelty detection: a review - part 1: statistical approaches , 2003, Signal Process..

[87]  R. Plutchik A GENERAL PSYCHOEVOLUTIONARY THEORY OF EMOTION , 1980 .

[88]  Phoebe C. Ellsworth,et al.  Shades of Joy: Patterns of Appraisal Differentiating Pleasant Emotions , 1988 .

[89]  Vladimir Pavlovic,et al.  Sentiment Flow for Video Interestingness Prediction , 2014, HuEvent '14.

[90]  Jayneel Parekh,et al.  The IITB Predicting Media Interestingness System for MediaEval 2017 , 2017, MediaEval.

[91]  S. Hidi A reexamination of the role of attention in learning from text , 1995 .

[92]  D. Berlyne,et al.  COMPLEXITY AND INCONGRUITY VARIABLES AS DETERMINANTS OF EXPLORATORY CHOICE AND EVALUATIVE RATINGS. , 1963, Canadian journal of psychology.

[93]  Nicu Sebe,et al.  How to Make an Image More Memorable?: A Deep Style Transfer Approach , 2017, ICMR.

[94]  M. Batey Creativity, Intelligence and Personality , 2012 .

[95]  Mark A. McDaniel,et al.  The effects of text-based interest on attention and recall. , 2000 .

[96]  Jean-Marc Odobez,et al.  Topic models for scene analysis and abnormality detection , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[97]  Steven R. Asher,et al.  The behavioral basis of acceptance, rejection, and perceived popularity. , 2009 .

[98]  Claire-Hélène Demarty,et al.  Experiencing the interestingness concept within and between pictures , 2016, HVEI.

[99]  A. Torralba,et al.  Intrinsic and extrinsic effects on image memorability , 2015, Vision Research.

[100]  K. Lorenz,et al.  Man Meets Dog , 1950 .

[101]  H. Fowler Curiosity and exploratory behavior , 1965 .

[102]  Qi Zhao,et al.  Learning saliency-based visual attention: A review , 2013, Signal Process..

[103]  James Ze Wang,et al.  Algorithmic inferencing of aesthetics and emotion in natural images: An exposition , 2008, 2008 15th IEEE International Conference on Image Processing.

[104]  Frank Hopfgartner,et al.  Fusion of learned multi-modal representations and dense trajectories for emotional analysis in videos , 2015, 2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI).

[105]  S. Vogt,et al.  Long-term memory for 400 pictures on a common theme. , 2007, Experimental psychology.

[106]  Michael R. Pointer,et al.  Investigation of Large Display Color Image Appearance― III: Modeling Image Naturalness , 2009 .

[107]  Rod A. Martin,et al.  Individual differences in uses of humor and their relation to psychological well-being: Development of the Humor Styles Questionnaire , 2003 .

[108]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[109]  Zhenyang Wu,et al.  Natural color image enhancement and evaluation algorithm based on human visual system , 2006, Comput. Vis. Image Underst..

[110]  I. Poggi,et al.  Multimodal markers of irony and sarcasm , 2003 .

[111]  R. Weisberg Creativity and knowledge: A challenge to theories. , 1998 .

[112]  Mohammad Soleymani The Quest for Visual Interest , 2015, ACM Multimedia.

[113]  K. Lorenz Studies in animal and human behaviour , 1970 .

[114]  Cynthia C. S. Liem,et al.  DUT-MMSR at MediaEval 2017: Predicting Media Interestingness Task , 2017, MediaEval.

[115]  Bogdan Ionescu,et al.  LAPI at MediaEval 2016 Predicting Media Interestingness Task , 2016, MediaEval.

[116]  Mingjing Li,et al.  Color texture moments for content-based image retrieval , 2002, Proceedings. International Conference on Image Processing.

[117]  Anna Jordanous,et al.  A Standardised Procedure for Evaluating Creative Systems: Computational Creativity Evaluation Based on What it is to be Creative , 2012, Cognitive Computation.

[118]  N. Schwarz,et al.  Processing Fluency and Aesthetic Pleasure: Is Beauty in the Perceiver's Processing Experience? , 2004, Personality and social psychology review : an official journal of the Society for Personality and Social Psychology, Inc.

[119]  J. Schirillo,et al.  Emotive hemispheric differences measured in real-life portraits using pupil diameter and subjective aesthetic preferences , 2012, Experimental Brain Research.

[120]  D. Berlyne Novelty, complexity, and hedonic value , 1970 .

[121]  Rossano Schifanella,et al.  The shortest path to happiness: recommending beautiful, quiet, and happy routes in the city , 2014, HT.

[122]  Hao-Chuan Wang,et al.  Investigating and predicting social and visual image interestingness on social media by crowdsourcing , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[123]  Naila Murray,et al.  AVA: A large-scale database for aesthetic visual analysis , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[124]  Aapo Hyvärinen,et al.  Modelling Image Complexity by Independent Component Analysis, with Application to Content-Based Image Retrieval , 2009, ICANN.

[125]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[126]  Matei Mancas,et al.  Memorability of natural scenes: The role of attention , 2013, 2013 IEEE International Conference on Image Processing.

[127]  Ellen Riloff,et al.  Sarcasm as Contrast between a Positive Sentiment and Negative Situation , 2013, EMNLP.

[128]  Jianxiong Xiao,et al.  What makes an image memorable? , 2011, CVPR 2011.

[129]  Aude Oliva,et al.  Visual long-term memory has a massive storage capacity for object details , 2008, Proceedings of the National Academy of Sciences.

[130]  Sajal K. Das,et al.  A novel feature set for video emotion recognition , 2018, Neurocomputing.

[131]  Jeffrey A. Gottfried,et al.  News use across social media platforms 2016 , 2016 .

[132]  Bir Bhanu,et al.  Automatic Target Recognition: State of the Art Survey , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[133]  Cordelia Schmid,et al.  Learning Color Names from Real-World Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[134]  Yale Song,et al.  Mouse Activity as an Indicator of Interestingness in Video , 2016, ICMR.

[135]  Xiaoou Tang,et al.  Photo and Video Quality Evaluation: Focusing on the Subject , 2008, ECCV.

[136]  Rossano Schifanella,et al.  6 Seconds of Sound and Vision: Creativity in Micro-videos , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[137]  Cynthia C. S. Liem TUD-MMC at MediaEval 2016: Predicting Media Interestingness Task , 2016, MediaEval.

[138]  Jürgen Schmidhuber,et al.  Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes , 2008, ABiALS.

[139]  Nicu Sebe,et al.  Who's Afraid of Itten: Using the Art Theory of Color Combination to Analyze Emotions in Abstract Paintings , 2015, ACM Multimedia.

[140]  K. Lorenz Studies in animal and human behaviour: II. Trans. R. Martin. , 1971 .

[141]  T. Hess,et al.  Motivational Influences on Controlled Processing: Moderating Distractibility in Older Adults , 2007, Neuropsychology, development, and cognition. Section B, Aging, neuropsychology and cognition.

[142]  Karen Nelson-Field,et al.  The Emotions that Drive Viral Video , 2013 .

[143]  Laurent Itti,et al.  Interesting objects are visually salient. , 2008, Journal of vision.

[144]  Andrew W. Fitzgibbon,et al.  Efficient Object Category Recognition Using Classemes , 2010, ECCV.

[145]  P. Silvia What is interesting? Exploring the appraisal structure of interest. , 2005, Emotion.

[146]  Alberto Del Bimbo,et al.  Web Video Popularity Prediction using Sentiment and Content Visual Features , 2016, ICMR.

[147]  K. Scherer,et al.  The World of Emotions is not Two-Dimensional , 2007, Psychological science.

[148]  Hao Su,et al.  Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification , 2010, NIPS.

[149]  Qi Zhao,et al.  A Paradigm for Building Generalized Models of Human Image Perception through Data Fusion , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[150]  Jurandy Almeida,et al.  A Rank Aggregation Framework for Video Interestingness Prediction , 2017, ICIAP.

[151]  I. Kant,et al.  Critique of judgment , 2000 .

[152]  Robert Macdougall Attention and Interest , 1911 .

[153]  Wei Jiang,et al.  Creating memorable video summaries that satisfy the user's intention for taking the videos , 2018, Neurocomputing.

[154]  P. Valdez,et al.  Effects of color on emotions. , 1994, Journal of experimental psychology. General.

[155]  M. Cabanac What is emotion? , 2002, Behavioural Processes.

[156]  Andreas Stolcke,et al.  The SRI-ICSI Spring 2007 Meeting and Lecture Recognition System , 2007, CLEAR.

[157]  J. P. Powell,et al.  Humour and teaching in higher education , 1985 .

[158]  Ashwin K. Vijayakumar,et al.  We are Humor Beings: Understanding and Predicting Visual Humor , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[159]  P. Silvia Exploring the Psychology of Interest , 2006 .

[160]  Nicu Sebe,et al.  Viraliency: Pooling Local Virality , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[161]  Hailin Jin,et al.  Composition-Preserving Deep Photo Aesthetics Assessment , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[162]  Jayneel Parekh,et al.  The MLPBOON Predicting Media Interestingness System for MediaEval 2016 , 2016, MediaEval.

[163]  P. P. Aitken Judgments of pleasingness and interestingness as functions of visual complexity. , 1974 .

[164]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[165]  Sumit Shekhar,et al.  Show and Recall: Learning What Makes Videos Memorable , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[166]  Philip W. Jackson,et al.  The person, the product, and the response: conceptual problems in the assessment of creativity. , 1964, Journal of personality.

[167]  Rossano Schifanella,et al.  An Image Is Worth More than a Thousand Favorites: Surfacing the Hidden Beauty of Flickr Pictures , 2015, ICWSM.

[168]  Daniel Gatica-Perez,et al.  Insiders and Outsiders: Comparing Urban Impressions between Population Groups , 2017, ICMR.

[169]  Daniel Kolb Critique of Judgment , 1988 .

[170]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[171]  Prosodic Variation and Audience Response , 1987 .

[172]  Benoit Huet,et al.  EURECOM@MediaEval 2017: Media Genre Inference for Predicting Media Interestingness , 2017, MediaEval.

[173]  J. Hoffman,et al.  The role of visual attention in saccadic eye movements , 1995, Perception & psychophysics.

[174]  Vito Di Gesù,et al.  A fuzzy approach to the evaluation of image complexity , 2009, Fuzzy Sets Syst..

[175]  Boyang Li,et al.  Heterogeneous Knowledge Transfer in Video Emotion Recognition, Attribution and Summarization , 2015, IEEE Transactions on Affective Computing.

[176]  Tao Chen,et al.  Visual Affect Around the World: A Large-scale Multilingual Visual Sentiment Ontology , 2015, ACM Multimedia.

[177]  Kenneth H. Rubin,et al.  Handbook of Peer Interactions, Relationships, and Groups , 2011 .

[178]  James Ze Wang,et al.  Studying Aesthetics in Photographic Images Using a Computational Approach , 2006, ECCV.

[179]  Fjj Frans Blommaert,et al.  Predicting the usefulness and naturalness of color reproductions , 2000 .

[180]  Antonio Torralba,et al.  Understanding and Predicting Image Memorability at a Large Scale , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[181]  J. R. Firth,et al.  A Synopsis of Linguistic Theory, 1930-1955 , 1957 .

[182]  Antonio Torralba,et al.  Understanding the Intrinsic Memorability of Images , 2011, NIPS.

[183]  K. Ann Renninger,et al.  Situational interest and its impact on reading and expository writing. , 1992 .

[184]  Sejong Yoon TCNJ-CS@MediaEval 2017 Predicting Media Interestingness Task , 2017, MediaEval.

[185]  R. T. H.,et al.  The Encyclopaedia Britannica , 1902, Nature.

[186]  Ali Borji,et al.  Salient Object Detection: A Benchmark , 2015, IEEE Transactions on Image Processing.

[187]  Richard Alan Peters,et al.  Image Complexity Metrics for Automatic Target Recognizers , 1990 .

[188]  Mohammad Soleymani,et al.  Affective Characterization of Movie Scenes Based on Multimedia Content Analysis and User's Physiological Emotional Responses , 2008, 2008 Tenth IEEE International Symposium on Multimedia.

[189]  Ira J. Roseman Appraisal Determinants of Emotions: Constructing a More Accurate and Comprehensive Theory , 1996 .

[190]  Vu Lam,et al.  NII-UIT at MediaEval 2016 Predicting Media Interestingness Task , 2016, MediaEval.

[191]  Ari Rappoport,et al.  Semi-Supervised Recognition of Sarcasm in Twitter and Amazon , 2010, CoNLL.

[192]  Paul J. Silvia,et al.  Aesthetic Emotions and Aesthetic People: Openness Predicts Sensitivity to Novelty in the Experiences of Interest and Pleasure , 2015, Front. Psychol..

[193]  Nicu Sebe,et al.  Affective Analysis of Professional and Amateur Abstract Paintings Using Statistical Analysis and Art Theory , 2015, ACM Trans. Interact. Intell. Syst..

[194]  Wei Liu,et al.  Fine-grained Video Attractiveness Prediction Using Multimodal Deep Learning on a Large Real-world Dataset , 2018, WWW.

[195]  E. Hess,et al.  Pupil Size as Related to Interest Value of Visual Stimuli , 1960, Science.

[196]  Claire-Hélène Demarty,et al.  Annotating, Understanding, and Predicting Long-term Video Memorability , 2018, ICMR.

[197]  Claire-Hélène Demarty,et al.  Technicolor@MediaEval 2016 Predicting Media Interestingness Task , 2016, MediaEval.

[198]  Bernard Ghanem,et al.  What Makes an Object Memorable? , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[199]  I. Hong,et al.  Predicting positive user responses to social media advertising: The roles of emotional appeal, informativeness, and creativity , 2016, Int. J. Inf. Manag..

[200]  Jianxiong Xiao,et al.  What Makes a Photograph Memorable? , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[201]  Yuanzhen Li,et al.  Measuring visual clutter. , 2007, Journal of vision.

[202]  Janne Heikkilä,et al.  Predicting the Valence of a Scene from Observers’ Eye Movements , 2015, PloS one.

[203]  Yu-Gang Jiang,et al.  Beauty is here: evaluating aesthetics in videos using multimodal features and free training data , 2013, MM '13.

[204]  Aline Roumy,et al.  Prediction of the inter-observer visual congruency (IOVC) and application to image ranking , 2011, ACM Multimedia.

[205]  Gerald C. Cupchik,et al.  Interest and Pleasure as Dimensions of Aesthetic Response , 1990 .

[206]  Charles R. Gruner,et al.  The effect of humor in dull and interesting informative speeches , 1970 .

[207]  Johan Wagemans,et al.  Artists' Use of Compositional Balance for Creating Visual Displays , 2001 .

[208]  Francis K. H. Quek,et al.  The effect of familiarity on perceived interestingness of images , 2013, Electronic Imaging.

[209]  Devi Parikh,et al.  Understanding image virality , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[210]  P. Silvia Looking past pleasure: Anger, confusion, disgust, pride, surprise, and other unusual aesthetic emotions. , 2009 .

[211]  Michelle A. Borkin,et al.  Eye Fixation Metrics for Large Scale Evaluation and Comparison of Information Visualizations , 2015, ETVIS.

[212]  Tom Minka,et al.  TrueSkillTM: A Bayesian Skill Rating System , 2006, NIPS.

[213]  R. Kreuz,et al.  How to be sarcastic: The echoic reminder theory of verbal irony. , 1989 .

[214]  J. Worthen,et al.  Distinctiveness and memory. , 2006 .

[215]  Mateu Sbert,et al.  Conceptualizing Birkhoff's Aesthetic Measure Using Shannon Entropy and Kolmogorov Complexity , 2007, CAe.

[216]  Stephen E Palmer,et al.  Aesthetic issues in spatial composition: effects of vertical position and perspective on framing single objects. , 2012, Journal of Experimental Psychology: Human Perception and Performance.

[217]  Martin K. Purvis,et al.  Wildlife video key-frame extraction based on novelty detection in semantic context , 2011, Multimedia Tools and Applications.

[218]  Bolei Zhou,et al.  Learning Deep Features for Scene Recognition using Places Database , 2014, NIPS.

[219]  Bernard Mérialdo,et al.  Where is the beauty?: retrieving appealing VideoScenes by learning Flickr-based graded judgments , 2012, ACM Multimedia.

[220]  Kevin Lynch,et al.  The Image of the City , 1960 .

[221]  Bob L. Sturm,et al.  Regression with sparse approximations of data , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[222]  V. Raskin,et al.  Script theory revis(it)ed: joke similarity and joke representation model , 1991 .

[223]  Julia Mueller,et al.  Can science account for taste? Psychological insights into art appreciation , 2011 .

[224]  Luc Van Gool,et al.  Video summarization by learning submodular mixtures of objectives , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[225]  Judy Pearsall,et al.  Oxford Dictionary of English , 2010 .

[226]  Xiangyang Xue,et al.  Predicting Emotions in User-Generated Videos , 2014, AAAI.

[227]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[228]  Paul J. Silvia,et al.  Positive and Negative Affect: Bridging States and Traits. , 2006 .

[229]  Jayneel Parekh,et al.  Deep Pairwise Classification and Ranking for Predicting Media Interestingness , 2018, ICMR.

[230]  Mats Sjöberg,et al.  Predicting Interestingness of Visual Content , 2017, Visual Content Indexing and Retrieval with Psycho-Visual Models.

[231]  Hailin Jin,et al.  BAM! The Behance Artistic Media Dataset for Recognition Beyond Photography , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[232]  Jurandy Almeida,et al.  GIBIS at MediaEval 2017: Predicting Media Interestingness Task , 2017, MediaEval.

[233]  Yu-Gang Jiang,et al.  BigVid at MediaEval 2016: Predicting Interestingness in Images and Videos , 2016, MediaEval.

[234]  Shuai Wang,et al.  RUC at MediaEval 2016: Predicting Media Interestingness Task , 2016, MediaEval.

[235]  Fei-Fei Li,et al.  Online detection of unusual events in videos via dynamic sparse coding , 2011, CVPR 2011.

[236]  Jurandy Almeida,et al.  UNIFESP at MediaEval 2016: Predicting Media Interestingness Task , 2016, MediaEval.