Łukasiewicz logic and Riesz spaces

We initiate a deep study of Riesz MV-algebras which are MV-algebras endowed with a scalar multiplication with scalars from $$[0,1]$$[0,1]. Extending Mundici’s equivalence between MV-algebras and $$\ell $$ℓ-groups, we prove that Riesz MV-algebras are categorically equivalent to unit intervals in Riesz spaces with strong unit. Moreover, the subclass of norm-complete Riesz MV-algebras is equivalent to the class of commutative unital C$$^*$$∗-algebras. The propositional calculus $${\mathbb R}{\mathcal L}$$RL that has Riesz MV-algebras as models is a conservative extension of Łukasiewicz $$\infty $$∞-valued propositional calculus and is complete with respect to evaluations in the standard model $$[0,1]$$[0,1]. We prove a normal form theorem for this logic, extending McNaughton theorem for Ł ukasiewicz logic. We define the notions of quasi-linear combination and quasi-linear span for formulas in $${\mathbb R}{\mathcal L},$$RL, and relate them with the analogue of de Finetti’s coherence criterion for $${\mathbb R}{\mathcal L}$$RL.

[1]  Masoud Khalkhali,et al.  Basic noncommutative geometry , 2009 .

[2]  B. Gerla Rational Lukasiewicz logic and DMV-algebras , 2012, 1211.5485.

[3]  F. Montagna Subreducts of MV-algebras with product and product residuation , 2005 .

[4]  DANIELE MUNDICI,et al.  Averaging the truth-value in Łukasiewicz logic , 1995, Stud Logica.

[5]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[6]  D. Mundici Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .

[7]  B. Finetti Sul significato soggettivo della probabilità , 1931 .

[8]  Bernhard Banaschewski,et al.  The Duality Between M‐Spaces and Compact Hausdorff Spaces , 1976 .

[9]  Robert McNaughton,et al.  A Theorem About Infinite-Valued Sentential Logic , 1951, J. Symb. Log..

[10]  C. J. Van Alten,et al.  On the variety of Riesz spaces , 2007 .

[11]  S. Kakutani Concrete Representation of Abstract (M)-Spaces (A characterization of the Space of Continuous Functions) , 1941 .

[12]  D. Fremlin,et al.  Topological Riesz Spaces and Measure Theory , 1974 .

[13]  Jan Kühr,et al.  De Finetti theorem and Borel states in [0, 1]-valued algebraic logic , 2007, Int. J. Approx. Reason..

[14]  Antonio di Nola,et al.  Riesz MV-algebras and their logic , 2011, EUSFLAT Conf..

[15]  D. Mundici Advanced Łukasiewicz calculus and MV-algebras , 2011 .

[16]  Daniele Mundici,et al.  Bookmaking over infinite-valued events , 2006, Int. J. Approx. Reason..

[17]  Ioana Leustean,et al.  MV-algebras with operators (the commutative and the non-commutative case) , 2004, Discret. Math..

[18]  Wan Ahmad Tajuddin Wan Abdullah,et al.  The Logic of Neural Networks , 1993 .

[19]  Antonio di Nola,et al.  Neural Networks And Rational Mcnaughton Functions , 2005, J. Multiple Valued Log. Soft Comput..

[20]  I. M. Gelfand,et al.  On the embedding of normed rings into the ring of operators in Hilbert space , 1987 .

[21]  C. Chang,et al.  A new proof of the completeness of the Łukasiewicz axioms , 1959 .

[22]  A. Zaanen Riesz Spaces, II , 1983 .

[23]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[24]  S. Ovchinnikov Max-Min Representation of Piecewise Linear Functions , 2000, math/0009026.

[25]  Klaus Keimel,et al.  Groupes et anneaux réticulés , 1977 .