Cooperating gene mutations in acute myeloid leukemia: a review of the literature

[1]  M. Gordon Adverse Prognostic Significance of KIT Mutations in Adult Acute Myeloid Leukemia With inv(16) and t(8;21): A Cancer and Leukemia Group B Study , 2008 .

[2]  T. Golub,et al.  Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. , 2007, Cancer cell.

[3]  Pu Zhang,et al.  Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. , 2007, Blood.

[4]  S. Fröhling,et al.  FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. , 2007, Cancer cell.

[5]  A. Mead,et al.  FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. , 2007, Blood.

[6]  T. Haferlach,et al.  Trisomy 13 is strongly associated with AML1/RUNX1 mutations and increased FLT3 expression in acute myeloid leukemia. , 2007, Blood.

[7]  M. Caligiuri,et al.  Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. , 2007, Blood.

[8]  Chunaram Choudhary,et al.  Flt3-dependent transformation by inactivating c-Cbl mutations in AML. , 2007, Blood.

[9]  J. Lotem,et al.  Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis , 2007, BMC Developmental Biology.

[10]  B. George,et al.  Impact of FLT3 mutations and secondary cytogenetic changes on the outcome of patients with newly diagnosed acute promyelocytic leukemia treated with a single agent arsenic trioxide regimen. , 2007, Haematologica.

[11]  S. Tsuzuki,et al.  Isoform-Specific Potentiation of Stem and Progenitor Cell Engraftment by AML 1 / RUNX 1 , 2007 .

[12]  S. Fröhling,et al.  The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. , 2007, The Journal of clinical investigation.

[13]  Kyu-Tae Kim,et al.  FLT3/ITD expression increases expansion, survival and entry into cell cycle of human haematopoietic stem/progenitor cells , 2007, British journal of haematology.

[14]  J. Cigudosa,et al.  DNA profiling analysis of 100 consecutive de novo acute myeloid leukemia cases reveals patterns of genomic instability that affect all cytogenetic risk groups , 2007, Leukemia.

[15]  M. Stratton,et al.  JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. , 2007, The New England journal of medicine.

[16]  T. Lister,et al.  Wilms' tumour 1 mutations are associated with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML , 2007, Leukemia.

[17]  T. Haferlach,et al.  JAK2 seems to be a typical cooperating mutation in therapy-related t(8;21)/ AML1-ETO-positive AML , 2007, Leukemia.

[18]  G. Ehninger,et al.  Tyrosine kinase mutations of JAK2 are rare events in AML but influence prognosis of patients with CBF-leukemias. , 2007, Haematologica.

[19]  H. Mitsuya,et al.  A Pedigree Harboring a Germ-Line N-Terminal C/EBPα Mutation and Development of Acute Myeloblastic Leukemia with a Somatic C-Terminal C/EBPα Mutation. , 2006 .

[20]  Selim Corbacioglu,et al.  Newly identified c-KIT receptor tyrosine kinase ITD in childhood AML induces ligand-independent growth and is responsive to a synergistic effect of imatinib and rapamycin. , 2006, Blood.

[21]  D. Gilliland,et al.  MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. , 2006, Blood.

[22]  L. Medeiros,et al.  Nucleophosmin gene mutations in acute myeloid leukemia. , 2006, Archives of pathology & laboratory medicine.

[23]  R. Braziel,et al.  FLT3 K663Q is a novel AML-associated oncogenic kinase: determination of biochemical properties and sensitivity to Sunitinib (SU11248) , 2006, Leukemia.

[24]  P. Guglielmelli,et al.  The size of duplication does not add to the prognostic significance of FLT3 internal tandem duplication in acute myeloid leukemia patients , 2006, Leukemia.

[25]  Sandra A. Moore,et al.  JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. , 2006, Blood.

[26]  M. Caligiuri,et al.  Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. , 2006, The Journal of clinical investigation.

[27]  Guido Marcucci,et al.  Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. , 2006, Blood.

[28]  R. Kusec,et al.  More on prognostic significance of FLT3/ITD size in acute myeloid leukemia (AML). , 2006, Blood.

[29]  Q. Waisfisz,et al.  Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples , 2006, Leukemia.

[30]  Sandra A. Moore,et al.  MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia , 2006, PLoS medicine.

[31]  D. Steensma,et al.  JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained , 2006, Leukemia.

[32]  B. Falini,et al.  Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations , 2006, Leukemia.

[33]  H. Dombret,et al.  Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML) , 2006, Leukemia.

[34]  Gerhard Ehninger,et al.  Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). , 2006, Blood.

[35]  T. Haferlach,et al.  Implications of NRAS mutations in AML: a study of 2502 patients. , 2006, Blood.

[36]  Jeremy W. Linsley,et al.  Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. , 2006, Blood.

[37]  P. Pelicci,et al.  Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. , 2006, Cancer research.

[38]  M. Yao,et al.  Nucleophosmin mutations in de novo acute myeloid leukemia: the age-dependent incidences and the stability during disease evolution. , 2006, Cancer research.

[39]  S. H. Lee,et al.  The JAK2 V617F mutation in de novo acute myelogenous leukemias , 2006, Oncogene.

[40]  C. Preudhomme,et al.  Cooperation of activating Ras/rtk signal transduction pathway mutations and inactivating myeloid differentiation gene mutations in M0 AML: a study of 45 patients , 2006, Leukemia.

[41]  Y. Hayashi,et al.  KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. , 2006, Blood.

[42]  W. Hiddemann,et al.  1 KIT-D 816 mutations in AML 1-ETO positive AML are associated with impaired event-free and overall survival , 2005 .

[43]  S. Bohlander,et al.  Block of C/EBPα function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations , 2006, The Journal of experimental medicine.

[44]  C. Bloomfield,et al.  BAALC expression and FLT3 internal tandem duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[45]  S. Fröhling,et al.  Rare occurrence of the JAK2 V617F mutation in AML subtypes M5, M6, and M7. , 2006, Blood.

[46]  D. Fabbro,et al.  PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. , 2006, Blood.

[47]  W. Hiddemann,et al.  Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML. , 2005, Blood.

[48]  T. Brümmendorf,et al.  Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. , 2004, Blood.

[49]  O. Margalit,et al.  Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells , 2006, Leukemia.

[50]  Irving L. Weissman,et al.  Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates , 2005, The Journal of experimental medicine.

[51]  S. Akiki,et al.  Acquired Isodisomy for chromosome 13 is common in AML, and associated with FLT3-itd mutations , 2005, Leukemia.

[52]  D. Christiansen,et al.  Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia , 2005, Leukemia.

[53]  Bob Löwenberg,et al.  Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. , 2005, Blood.

[54]  Stefan Fröhling,et al.  Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. , 2005, Blood.

[55]  M. Loh,et al.  The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. , 2005, Blood.

[56]  E. Estey,et al.  JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. , 2005, Blood.

[57]  R. Hills,et al.  No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML10 and 12 trials. , 2005, Blood.

[58]  J. Cayuela,et al.  Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype. , 2005, Blood.

[59]  T. Naoe,et al.  Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. , 2005, Blood.

[60]  T. A. Lister,et al.  Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias. , 2005, Cancer research.

[61]  R. Hills,et al.  RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. , 2005, Blood.

[62]  G. Marti,et al.  MBL and MoBL – Response to Ziegler‐Heitbrock , 2005 .

[63]  M. Heinrich,et al.  Differences in the prevalence of PTPN11 mutations in FAB M5 paediatric acute myeloid leukaemia , 2005, British journal of haematology.

[64]  S. Meshinchi,et al.  Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia , 2005, Leukemia.

[65]  F. Rosenbauer,et al.  Effect of transcription-factor concentrations on leukemic stem cells. , 2005, Blood.

[66]  B. Falini,et al.  Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. , 2005, Blood.

[67]  M. Fey,et al.  CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). , 2005, Blood.

[68]  C. Scheibenbogen,et al.  Wilms' tumour gene 1 (WT1) in human neoplasia , 2005, Leukemia.

[69]  T. Naoe,et al.  Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis , 2005, Leukemia.

[70]  Natalia Meani,et al.  Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. , 2005, Blood.

[71]  C. Der,et al.  Signaling Interplay in Ras Superfamily Function , 2005, Current Biology.

[72]  Doriano Fabbro,et al.  Activation mutations of human c-KIT resistant to imatinib mesylate are sensitive to the tyrosine kinase inhibitor PKC412. , 2005, Blood.

[73]  Chunaram Choudhary,et al.  AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. , 2005, Blood.

[74]  D. Catovsky,et al.  Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia , 2005, Leukemia.

[75]  M. Caligiuri,et al.  The MLL partial tandem duplication: evidence for recessive gain-of-function in acute myeloid leukemia identifies a novel patient subgroup for molecular-targeted therapy. , 2005, Blood.

[76]  D. Gary Gilliland,et al.  Cancer biology: Summing up cancer stem cells , 2005, Nature.

[77]  C. Miething,et al.  FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. , 2005, Blood.

[78]  Stefan N Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. , 2005, Nature.

[79]  R. Cairoli,et al.  STI 571 inhibition effect on KITAsn822Lys-mediated signal transduction cascade. , 2005, Experimental hematology.

[80]  M. Tartaglia,et al.  Somatic PTPN11 mutations in childhood acute myeloid leukaemia , 2005, British journal of haematology.

[81]  Mario Cazzola,et al.  A gain-of-function mutation of JAK2 in myeloproliferative disorders. , 2005, The New England journal of medicine.

[82]  W. Hiddemann,et al.  KIT exon 8 mutations associated with core-binding factor (CBF)-acute myeloid leukemia (AML) cause hyperactivation of the receptor in response to stem cell factor. , 2005, Blood.

[83]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[84]  P. Campbell,et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders , 2005, The Lancet.

[85]  C. Preudhomme,et al.  CEBPA point mutations in hematological malignancies , 2005, Leukemia.

[86]  Jih-Luh Tang,et al.  Characterization of CEBPA Mutations in Acute Myeloid Leukemia: Most Patients with CEBPA Mutations Have Biallelic Mutations and Show a Distinct Immunophenotype of the Leukemic Cells , 2005, Clinical Cancer Research.

[87]  M. Fey,et al.  Risk Assessment in Patients with Acute Myeloid Leukemia and a Normal Karyotype , 2005, Clinical Cancer Research.

[88]  Randy Allred,et al.  A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. , 2005, Blood.

[89]  Paola Fazi,et al.  Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. , 2005, The New England journal of medicine.

[90]  Johan Lennartsson,et al.  Normal and Oncogenic Forms of the Receptor Tyrosine Kinase Kit , 2005, Stem cells.

[91]  J. Sierra,et al.  Low frequency of exon 3 PTPN11 mutations in adult de novo acute myeloid leukemia. Analysis of a consecutive series of 173 patients. , 2005, Haematologica.

[92]  J. Griffin,et al.  After chronic myelogenous leukemia: tyrosine kinase inhibitors in other hematologic malignancies. , 2005, Blood.

[93]  E. Estey,et al.  Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412 , 2004 .

[94]  T. Lister,et al.  Mutation of CEBPA in familial acute myeloid leukemia. , 2004, The New England journal of medicine.

[95]  H. Mitsuya,et al.  Imatinib Mesylate for Refractory Acute Myeloblastic Leukemia Harboring inv(16) and C-KIT Exon 8 Mutation. , 2004 .

[96]  M. Loh,et al.  PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group , 2004, Leukemia.

[97]  J. Rowley,et al.  The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[98]  J. Boultwood,et al.  Mutations in PTPN11 are rare in adult myelodysplastic syndromes and acute myeloid leukemia , 2004, American journal of hematology.

[99]  E. Estey,et al.  FLT3 mutation and response to intensive chemotherapy in young adult and elderly patients with normal karyotype. , 2004, Leukemia research.

[100]  H. Kantarjian,et al.  Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. , 2004, Blood.

[101]  Leena Latonen,et al.  Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. , 2004, Cancer cell.

[102]  C. Nerlov C/EBPα mutations in acute myeloid leukaemias , 2004, Nature Reviews Cancer.

[103]  R. Verhaak,et al.  Prognostically useful gene-expression profiles in acute myeloid leukemia. , 2004, The New England journal of medicine.

[104]  T. Kyo,et al.  High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. , 2004, Blood.

[105]  M. Loh,et al.  Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. , 2004, Blood.

[106]  J. Reilly,et al.  Mutations in PTPN11 are uncommon in adult myelodysplastic syndromes and acute myeloid leukaemia , 2004, British journal of haematology.

[107]  L. Shih,et al.  Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia , 2004, Leukemia.

[108]  S. Fröhling,et al.  CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[109]  L. Shih,et al.  Heterogeneous patterns of FLT3 Asp(835) mutations in relapsed de novo acute myeloid leukemia: a comparative analysis of 120 paired diagnostic and relapse bone marrow samples. , 2004, Clinical cancer research : an official journal of the American Association for Cancer Research.

[110]  J. Radich,et al.  Novel FLT3 point mutations within exon  14 found in patients with acute myeloid leukaemia , 2004, British journal of haematology.

[111]  Charles J. Sherr,et al.  Physical and Functional Interactions of the Arf Tumor Suppressor Protein with Nucleophosmin/B23 , 2004, Molecular and Cellular Biology.

[112]  A. Verma,et al.  Jak family of kinases in cancer , 2003, Cancer and Metastasis Reviews.

[113]  C. Nerlov C/EBPalpha mutations in acute myeloid leukaemias. , 2004, Nature reviews. Cancer.

[114]  M. Schaich,et al.  Prognostic significance of N-RAS and K-RAS mutations in 232 patients with acute myeloid leukemia. , 2004, Haematologica.

[115]  M. Loh,et al.  SHP-2 and myeloid malignancies. , 2004, Current opinion in hematology.

[116]  Alessandro Beghini,et al.  KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. , 2004, Haematologica.

[117]  J. Reilly Receptor tyrosine kinases in normal and malignant haematopoiesis. , 2003, Blood reviews.

[118]  T. Naoe,et al.  Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype , 2003, Leukemia.

[119]  Natalia Meani,et al.  Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. , 2003, The Journal of clinical investigation.

[120]  S. Fröhling,et al.  Mutation analysis of the transcription factor PU.1 in younger adults (16 to 60 years) with acute myeloid leukemia: a study of the AML Study Group Ulm (AMLSG ULM). , 2003, Blood.

[121]  M. Heinrich,et al.  An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[122]  D. Tenen,et al.  The amino terminal and E2F interaction domains are critical for C/EBP alpha-mediated induction of granulopoietic development of hematopoietic cells. , 2003, Blood.

[123]  F. Cavalli,et al.  A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. , 2003, Blood.

[124]  J. Radich,et al.  FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. , 2003, Blood.

[125]  A. Hagemeijer,et al.  FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. , 2003, Blood.

[126]  J. Reilly,et al.  Incidence and prognosis of c‐KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias , 2003, British journal of haematology.

[127]  T. Lister,et al.  Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2 , 2003, Genes, chromosomes & cancer.

[128]  T. Kummalue,et al.  Cell cycle inhibition mediated by the outer surface of the C/EBPα basic region is required but not sufficient for granulopoiesis , 2003, Oncogene.

[129]  M. Heinrich,et al.  SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. , 2003, Blood.

[130]  Daniel G. Tenen,et al.  Disruption of differentiation in human cancer: AML shows the way , 2003, Nature Reviews Cancer.

[131]  A. Ganser,et al.  The emergence of a C/EBPα mutation in the clonal evolution of MDS towards secondary AML , 2003, Leukemia.

[132]  Bob Löwenberg,et al.  Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. , 2003, The hematology journal : the official journal of the European Haematology Association.

[133]  J. Downward Targeting RAS signalling pathways in cancer therapy , 2003, Nature Reviews Cancer.

[134]  C. Preudhomme,et al.  New mechanisms of AML1 gene alteration in hematological malignancies , 2003, Leukemia.

[135]  C. Preudhomme,et al.  Are PU.1 mutations frequent genetic events in acute myeloid leukemia (AML)? , 2002, Blood.

[136]  Axel Benner,et al.  Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. , 2002, Blood.

[137]  F. Mandelli,et al.  Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol , 2002, Leukemia.

[138]  J. Cayuela,et al.  Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). , 2002, Blood.

[139]  L. Shih,et al.  Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. , 2002, Blood.

[140]  S. Langabeer,et al.  Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. , 2002, Blood.

[141]  J. Griffin,et al.  The roles of FLT3 in hematopoiesis and leukemia. , 2002, Blood.

[142]  Martin Dugas,et al.  Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. , 2002 .

[143]  Pier Giuseppe Pelicci,et al.  Nucleophosmin regulates the stability and transcriptional activity of p53 , 2002, Nature Cell Biology.

[144]  G. Ehninger,et al.  Analysis of Flt3-activating Mutations in 979 Patients with Acute Myelogenous Leukemia: Association with Fab Subtypes and Identification of Subgroups with Poor Prognosis , 2022 .

[145]  B. Smith,et al.  A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. , 2002, Blood.

[146]  A. Friedman Transcriptional regulation of granulocyte and monocyte development , 2002, Oncogene.

[147]  Carl W. Miller,et al.  C/EBP-β, C/EBP-δ, PU.1, AML1 genes: mutational analysis in 381 samples of hematopoietic and solid malignancies , 2002 .

[148]  S. Rollinson,et al.  Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7 , 2002, Genes, chromosomes & cancer.

[149]  S. Bhattacharya,et al.  Signaling through the JAK/STAT pathway, recent advances and future challenges. , 2002, Gene.

[150]  Carl W. Miller,et al.  Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. , 2002, Blood.

[151]  Carl W. Miller,et al.  C/EBP-beta, C/EBP-delta, PU.1, AML1 genes: mutational analysis in 381 samples of hematopoietic and solid malignancies. , 2002, Leukemia research.

[152]  M. Minden,et al.  Heterozygous PU.1 mutations are associated with acute myeloid leukemia. , 2002, Blood.

[153]  M. Caligiuri,et al.  BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. , 2002, Nature genetics.

[154]  M. Caligiuri,et al.  BCR-ABL suppresses C/EBPα expression through inhibitory action of hnRNP E2 , 2002, Nature Genetics.

[155]  U. Jaeger,et al.  Variable prognostic value of FLT3 internal tandem duplications in patients with de novo AML and a normal karyotype, t(15;17), t(8;21) or inv(16). , 2002, The hematology journal : the official journal of the European Haematology Association.

[156]  Michael A. Patton,et al.  Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome , 2001, Nature Genetics.

[157]  M. Caligiuri,et al.  Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. , 2001, Cancer research.

[158]  E Leonard,et al.  Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. , 2001, Blood.

[159]  B. Smith,et al.  A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations. , 2001, Blood.

[160]  R. Arceci,et al.  STAT3 activation is required for Asp816 mutant c-Kit induced tumorigenicity , 2001, Oncogene.

[161]  J. Radich,et al.  FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. , 2001, Blood.

[162]  T. Golub,et al.  c-Myc Is a Critical Target for C/EBPα in Granulopoiesis , 2001, Molecular and Cellular Biology.

[163]  T. Hunter,et al.  Oncogenic kinase signalling , 2001, Nature.

[164]  D. Haber,et al.  The Wilms tumor suppressor WT1 directs stage‐specific quiescence and differentiation of human hematopoietic progenitor cells , 2001, The EMBO journal.

[165]  T. Naoe,et al.  Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. , 2001, Blood.

[166]  Torsten Haferlach,et al.  AML1–ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia , 2001, Nature Medicine.

[167]  J. Downing AML1/CBFβ transcription complex: its role in normal hematopoiesis and leukemia , 2001, Leukemia.

[168]  D. Christiansen,et al.  Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[169]  D. Gilliland,et al.  Molecular genetics of acute myeloid leukaemia. , 2001, Best practice & research. Clinical haematology.

[170]  J. Goldman,et al.  Mutations of the transcription factor AML1/CBA2 are uncommon in blastic transformation of chronic myeloid leukaemia , 2001, Leukemia.

[171]  Pu Zhang,et al.  Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia , 2001, Nature Genetics.

[172]  I. Bernstein,et al.  Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. , 2001, Blood.

[173]  G. Behre,et al.  Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. , 2001, Nature genetics.

[174]  J. Downing,et al.  Somatic mutations of the aml-1 gene are frequent in acute myeloid leukemia with fab mo morphology , 2000 .

[175]  M. Kurokawa,et al.  Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. , 2000, Blood.

[176]  E. Macintyre,et al.  High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2αB gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21 , 2000 .

[177]  J. Downing,et al.  Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. , 2000, Immunity.

[178]  H. F. Horn,et al.  Nucleophosmin/B23 Is a Target of CDK2/Cyclin E in Centrosome Duplication , 2000, Cell.

[179]  R. Crystal,et al.  Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. , 2000, Blood.

[180]  S. Hiebert,et al.  Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. , 2000, Gene.

[181]  P. Peterlongo,et al.  C-kit mutations in core binding factor leukemias. , 2000, Blood.

[182]  Verónica Ayllón, Angelita Rebollo Ras-induced cellular events , 2000 .

[183]  J. Downing,et al.  Biological Characteristics of the Leukemia-Associated Transcriptional Factor AML1 Disclosed by Hematopoietic Rescue ofAML1-Deficient Embryonic Stem Cells by Using a Knock-in Strategy , 2000, Molecular and Cellular Biology.

[184]  A. Rebollo,et al.  Ras-induced cellular events (review). , 2000, Molecular membrane biology.

[185]  E. Macintyre,et al.  High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. , 2000, Blood.

[186]  K. Horibe,et al.  Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. , 1999, Medical and pediatric oncology.

[187]  John M. Maris,et al.  Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia , 1999, Nature Genetics.

[188]  J. Reilly,et al.  c‐kit proto‐oncogene exon 8 in‐frame deletion plus insertion mutations in acute myeloid leukaemia , 1999, British journal of haematology.

[189]  T. Naoe,et al.  Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. , 1999, Blood.

[190]  T. Gu,et al.  Core-binding factor: a central player in hematopoiesis and leukemia. , 1999, Cancer research.

[191]  H. Yamasaki,et al.  Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. , 1999, Blood.

[192]  R. Kurzrock,et al.  RAS and leukemia: from basic mechanisms to gene-directed therapy. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[193]  C. Preudhomme,et al.  Therapy-related myelodysplastic syndrome and acute myeloid leukemia with 17p deletion. A report on 25 cases , 1999, Leukemia.

[194]  M. Taniwaki,et al.  Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia , 1999, Leukemia.

[195]  D. Tenen,et al.  CCAAT/Enhancer Binding Protein α Is a Regulatory Switch Sufficient for Induction of Granulocytic Development from Bipotential Myeloid Progenitors , 1998, Molecular and Cellular Biology.

[196]  K. Aldape,et al.  An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[197]  K. Pritchard-Jones,et al.  Wilms' tumor (WT1) gene mutations occur mainly in acute myeloid leukemia and may confer drug resistance. , 1998, Blood.

[198]  C. Preudhomme,et al.  17p Deletion in acute myeloid leukemia and myelodysplastic syndrome. Analysis of breakpoints and deleted segments by fluorescence in situ. , 1998, Blood.

[199]  V. Rotter,et al.  Pooled analysis of p53 mutations in hematological malignancies , 1998, Human mutation.

[200]  T. Naoe,et al.  Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia , 1997, Leukemia.

[201]  J. Licht,et al.  Transcription factors, normal myeloid development, and leukemia. , 1997, Blood.

[202]  J. Zhang,et al.  AML1A and AML1B can transactivate the human IL-3 promoter. , 1997, Journal of immunology.

[203]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[204]  R. Krance,et al.  Loss of the DEK-CAN fusion transcript in a child with t(6;9) acute myeloid leukemia following chemotherapy and allogeneic bone marrow transplantation , 1997, Leukemia.

[205]  D. Tenen,et al.  Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[206]  K. Tanaka,et al.  An acute myeloid leukemia gene, AML1, regulates transcriptional activation and hemopoietic myeloid cell differentiation antagonistically by two alternative spliced forms. , 1997, Leukemia.

[207]  F. Alt,et al.  The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. , 1996, Cell.

[208]  F. Alt,et al.  The CBFβ Subunit Is Essential for CBFα2 (AML1) Function In Vivo , 1996, Cell.

[209]  R. Bronson,et al.  Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[210]  J. Rowley,et al.  Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[211]  D. Tenen,et al.  PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. , 1996, Blood.

[212]  M. Marín‐Padilla,et al.  Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[213]  J. R. Smith,et al.  CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein. , 1996, Genes & development.

[214]  M. Borowitz,et al.  Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. , 1996, Blood.

[215]  S. Corey,et al.  The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. , 1996, Blood.

[216]  J. Downing,et al.  AML1, the Target of Multiple Chromosomal Translocations in Human Leukemia, Is Essential for Normal Fetal Liver Hematopoiesis , 1996, Cell.

[217]  S. Raimondi,et al.  The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. , 1996, Oncogene.

[218]  E. Macintyre,et al.  High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. , 1995, Blood.

[219]  P. Glazer,et al.  p53 inactivation by HPV16 E6 results in increased mutagenesis in human cells. , 1995, Cancer research.

[220]  A. Balmain,et al.  Spontaneous and ionizing radiation-induced chromosomal abnormalities in p53-deficient mice. , 1995, Cancer research.

[221]  E. Soeda,et al.  Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. , 1995, Nucleic acids research.

[222]  J. Rowley,et al.  AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. , 1995, Blood.

[223]  E. Wattel,et al.  Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoïesis and a high incidence of P53 mutations. , 1995, Leukemia.

[224]  H. Hirai,et al.  An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. , 1995, The EMBO journal.

[225]  I. Bar-Am,et al.  AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. , 1994, Genomics.

[226]  C. Harris,et al.  Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. , 1994, Cancer research.

[227]  F. Galibert,et al.  Genomic structure of the downstream part of the human FLT3 gene: exon/intron structure conservation among genes encoding receptor tyrosine kinases (RTK) of subclass III. , 1994, Gene.

[228]  C. Bloomfield,et al.  Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia , 1994 .

[229]  D N Shapiro,et al.  Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. , 1994, Science.

[230]  B. Quesnel,et al.  p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. , 1994, Blood.

[231]  Y. Ito,et al.  PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[232]  G. Wahl,et al.  Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles , 1992, Cell.

[233]  Thea D. Tlsty,et al.  Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53 , 1992, Cell.

[234]  M. Ohki,et al.  t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[235]  R. Berger,et al.  P53 gene mutations in acute myeloid leukemia with 17p monosomy. , 1991, Blood.

[236]  A. Levine,et al.  The p53 tumour suppressor gene , 1991, Nature.

[237]  M. Minden,et al.  Mutation of the p53 gene in human acute myelogenous leukemia. , 1991, Blood.

[238]  R. Metcalf,et al.  Mutational hotspot in the p53 gene in human hepatocellular carcinomas. , 1991, Nature.

[239]  J. Radich,et al.  N-ras mutations in adult de novo acute myelogenous leukemia: prevalence and clinical significance. , 1990, Blood.

[240]  M. Olson,et al.  Interaction of nucleolar phosphoprotein B23 with nucleic acids. , 1989, Biochemistry.

[241]  A. Levine,et al.  The p53 proto-oncogene can act as a suppressor of transformation , 1989, Cell.

[242]  C. Lehner,et al.  Major nucleolar proteins shuttle between nucleus and cytoplasm , 1989, Cell.

[243]  M. Isobe,et al.  Localization of gene for human p53 tumour antigen to band 17p13 , 1986, Nature.