6 – PHOTODIODE DETECTORS

Abstract Photodiodes of certain types are viable radiation detectors in the vacuum ultraviolet spectral region and are commonly used as the detectors of choice for radiometric applications. Some aspects of the historical evolution of the technology of these detectors are reviewed. The two general types of photodiodes most often used in this region, photoemissive and semiconducting, are discussed in detail. The most common materials and designs are given, with examples of their spectral response and applications shown. Special precautions necessary for proper use of photodiodes in the vacuum ultraviolet are identified and discussed.

[1]  H. Onuki,et al.  Characteristics of semiconductor photodiodes in the VUV region , 1990 .

[2]  Graeme Morrison,et al.  The use of avalanche photodiodes for the detection of soft x rays , 1992 .

[3]  Raj Korde,et al.  Stable, high quantum efficiency, UV-enhanced silicon photodiodes by arsenic diffusion , 1987 .

[4]  A. Tuzzolino Silicon Photodiode Vacuum Ultraviolet Detector , 1964 .

[5]  P. Görlich Über zusammengesetzte, durchsichtige Photokathoden , 1936 .

[6]  C. W. Struck,et al.  Scattering by ionization and phonon emission in semiconductors , 1980 .

[7]  G. Eppeldauer,et al.  Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature. , 1991, Applied optics.

[8]  R. Korde,et al.  Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet. , 1989, Applied optics.

[9]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[10]  U. Hochuli,et al.  Indium Sealing Techniques , 1972 .

[11]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[12]  R. Madden,et al.  NBS Detector Standards for the Far Ultraviolet. , 1973, Applied optics.

[13]  H. Onuki,et al.  Detector calibration in the wavelength region 10 nm to 100 nm based on a windowless rare gas ionization chamber , 1995 .

[14]  R. D. Ryan Precision Measurements of the Ionization Energy and Its Temperature Variation in High Purity Silicon Radiation Detectors , 1973 .

[15]  W. C. Walker,et al.  Photoelectric Yields in the Vacuum Ultraviolet , 1955 .

[16]  D W Phillion,et al.  X-ray production ˜ 13 nm from laser-produced plasmas for projection x-ray lithography applications. , 1993, Applied optics.

[17]  C. Kenty Photoelectric Yields in the Extreme Ultraviolet , 1933 .

[18]  C. Cerjan,et al.  Conversion efficiencies from laser-produced plasmas in the extreme ultraviolet regime , 1996 .

[19]  Gary J. Rottman,et al.  Vacuum-ultraviolet instrumentation for solar irradiance and thermospheric airglow , 1993 .

[20]  Walter B. Fowler,et al.  SPECTRALLY SELECTIVE PHOTODETECTORS FOR THE MIDDLE AND VACUUM ULTRAVIOLET , 1962 .

[21]  H. Onuki,et al.  Spectral quantum efficiencies of semiconductor photodiodes in the far ultraviolet region , 1989 .

[22]  D. Moses,et al.  Ultraviolet photoresponse characteristics of diamond diodes. , 1991, Applied optics.

[23]  J. Cable,et al.  One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes , 1993 .

[24]  Michael Krumrey,et al.  Self‐calibration of semiconductor photodiodes in the soft x‐ray region , 1992 .

[25]  C. Tran,et al.  Analytical thermal lens instrumentation , 1996 .

[26]  L. Randall Canfield,et al.  Far Ultraviolet Detector Standards , 1987, Journal of Research of the National Bureau of Standards.

[27]  L. R. Canfield,et al.  Sounding rocket measurement of the absolute solar EUV flux utilizing a silicon photodiode , 1990 .

[28]  G. Hass,et al.  On the Preparation of Hard Oxide Films with Precisely Controlled Thickness on Evaporated Aluminum Mirrors , 1949 .

[29]  M. A. Lind,et al.  Silicon photodetector instabilities in the uv. , 1976, Applied optics.

[30]  Stuart M. Johnson Ultraviolet angular response of cesium-telluride photocathodes. , 1992, Applied optics.

[31]  Manijeh Razeghi,et al.  Semiconductor ultraviolet detectors , 1996 .