Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy.

Hydrophobically modified maghemite (γ-Fe(2)O(3)) nanoparticles were encapsulated within the membrane of poly(trimethylene carbonate)-b-poly(l-glutamic acid) (PTMC-b-PGA) block copolymer vesicles using a nanoprecipitation process. This formation method gives simple access to highly magnetic nanoparticles (MNPs) (loaded up to 70 wt %) together with good control over the vesicles size (100-400 nm). The simultaneous loading of maghemite nanoparticles and doxorubicin was also achieved by nanoprecipitation. The deformation of the vesicle membrane under an applied magnetic field has been evidenced by small angle neutron scattering. These superparamagnetic hybrid self-assemblies display enhanced contrast properties that open potential applications for magnetic resonance imaging. They can also be guided in a magnetic field gradient. The feasibility of controlled drug release by radio frequency magnetic hyperthermia was demonstrated in the case of encapsulated doxorubicin molecules, showing the viability of the concept of magneto-chemotherapy. These magnetic polymersomes can be used as efficient multifunctional nanocarriers for combined therapy and imaging.

[1]  Andrea Prieto Astalan,et al.  Sensitive High Frequency AC Susceptometry in Magnetic Nanoparticle Applications , 2010 .

[2]  Sébastien Lecommandoux,et al.  A simple method to achieve high doxorubicin loading in biodegradable polymersomes. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[3]  Marie-Hélène Delville,et al.  Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness. , 2010, ACS nano.

[4]  K. Sun,et al.  The magnetophoretic mobility and superparamagnetism of core-shell iron oxide nanoparticles with dual targeting and imaging functionality. , 2010, Biomaterials.

[5]  Stefan Thalhammer,et al.  Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force. , 2010, Molecular pharmaceutics.

[6]  Yanjing Chen,et al.  Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. , 2010, ACS nano.

[7]  S. Lecommandoux,et al.  Temperature responsive poly(trimethylene carbonate)-block-poly(L-glutamic acid) copolymer: polymersomes fusion and fission , 2010 .

[8]  Miqin Zhang,et al.  Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. , 2010, Advanced drug delivery reviews.

[9]  Pallab Pradhan,et al.  Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[10]  Sébastien Lecommandoux,et al.  Biocompatible and biodegradable poly(trimethylene carbonate)-b-poly(L-glutamic acid) polymersomes: size control and stability. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[11]  A. Alexeev,et al.  Modeling magnetic microcapsules that crawl in microchannels , 2010 .

[12]  So-Jung Park,et al.  Morphological transitions of block-copolymer bilayers via nanoparticle clustering. , 2010, Small.

[13]  Gennaro Bellizzi,et al.  On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia , 2010, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[14]  Jinming Gao,et al.  Polymeric Nanomedicine for Cancer MR Imaging and Drug Delivery , 2009 .

[15]  Rachel K. O'Reilly,et al.  Advances and challenges in smart and functional polymer vesicles , 2009 .

[16]  Kyung-Hwa Yoo,et al.  Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. , 2009, ACS nano.

[17]  Chi‐Kuang Sun,et al.  Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures. , 2009, Journal of the American Chemical Society.

[18]  L Sancey,et al.  Drug development in oncology assisted by noninvasive optical imaging. , 2009, International journal of pharmaceutics.

[19]  M. Zborowski,et al.  Magnetic nanoparticle drug carriers and their study by quadrupole magnetic field-flow fractionation. , 2009, Molecular pharmaceutics.

[20]  F. Szoka,et al.  Synthesis and in vivo antitumor efficacy of PEGylated poly(l-lysine) dendrimer-camptothecin conjugates. , 2009, Molecular pharmaceutics.

[21]  Sungho Jin,et al.  Magnetic nanoparticles for theragnostics. , 2009, Advanced drug delivery reviews.

[22]  Giuseppe Battaglia,et al.  Polymersomes: nature inspired nanometer sized compartments , 2009 .

[23]  Rajesh Singh,et al.  Nanoparticle-based targeted drug delivery. , 2009, Experimental and molecular pathology.

[24]  Ick Chan Kwon,et al.  New Generation of Multifunctional Nanoparticles for Cancer Imaging and Therapy , 2009 .

[25]  A. Roch,et al.  Magnetic resonance relaxation properties of superparamagnetic particles. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[26]  Dennis E Discher,et al.  Polymersome carriers: from self-assembly to siRNA and protein therapeutics. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[27]  Patrick Keller,et al.  Stimuli-responsive polymer vesicles , 2009 .

[28]  Adam Blanazs,et al.  Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. , 2009, Macromolecular rapid communications.

[29]  W. Meier,et al.  Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. , 2009, Macromolecular bioscience.

[30]  I. Chen,et al.  Biomedical nanoparticle carriers with combined thermal and magnetic responses , 2009 .

[31]  Zhiyuan Zhong,et al.  Stimuli-responsive polymersomes for programmed drug delivery. , 2009, Biomacromolecules.

[32]  J. Le Meins,et al.  Role of block copolymer nanoconstructs in cancer therapy. , 2009, Critical reviews in therapeutic drug carrier systems.

[33]  Y. Raikher,et al.  Absorption of AC field energy in a suspension of magnetic dipoles , 2008 .

[34]  A. Roch,et al.  PEO coated magnetic nanoparticles for biomedical application , 2008 .

[35]  Claire Wilhelm,et al.  The effect of magnetic targeting on the uptake of magnetic-fluid-loaded liposomes by human prostatic adenocarcinoma cells. , 2008, Biomaterials.

[36]  Chris A Flask,et al.  Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. , 2008, Biomaterials.

[37]  D. Hammer,et al.  Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. , 2008, Methods.

[38]  Jerry S. H. Lee,et al.  Magnetic nanoparticles in MR imaging and drug delivery. , 2008, Advanced drug delivery reviews.

[39]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[40]  C. Ménager,et al.  Location of magnetic and fluorescent nanoparticles encapsulated inside giant liposomes. , 2008, The journal of physical chemistry. B.

[41]  A. Kornowski,et al.  Nanoparticle-loaded magnetophoretic vesicles. , 2008, Journal of the American Chemical Society.

[42]  S. Lesieur,et al.  Lipid bilayer elasticity measurements in giant liposomes in contact with a solubilizing surfactant. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[43]  N. Slater,et al.  The in-flow capture of superparamagnetic nanoparticles for targeting therapeutics. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[44]  J. Camacho,et al.  Low-Gradient Magnetophoresis through Field-Induced Reversible Aggregation , 2008 .

[45]  A. Jordan,et al.  Clinical applications of magnetic nanoparticles for hyperthermia , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[46]  Jean-Paul Fortin,et al.  Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles , 2008, European Biophysics Journal.

[47]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[48]  Zheng-Rong Lu,et al.  Polymer platforms for drug delivery and biomedical imaging. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[49]  K. Hamad-Schifferli,et al.  High-density encapsulation of Fe3O4 nanoparticles in lipid vesicles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[50]  J. Tomek,et al.  Characterization of Ferromagnetic Powders for Magnetopneumography and Other Applications , 2007 .

[51]  A. Brûlet,et al.  Improvement of data treatment in small-angle neutron scattering , 2007 .

[52]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[53]  A. Mauger,et al.  Size distribution of superparamagnetic particles determined by magnetic sedimentation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[54]  Philippe Robert,et al.  Recent advances in iron oxide nanocrystal technology for medical imaging. , 2006, Advanced drug delivery reviews.

[55]  Frank Bates,et al.  Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[56]  F. Szoka,et al.  A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas , 2006, Proceedings of the National Academy of Sciences.

[57]  Hua Ai,et al.  Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. , 2006, Nano letters.

[58]  W. Weitschies,et al.  The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia , 2006 .

[59]  Ruth Duncan,et al.  Polymer conjugates as anticancer nanomedicines , 2006, Nature Reviews Cancer.

[60]  Sébastien Vasseur,et al.  Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia , 2006 .

[61]  Olivier Sandre,et al.  Self-assemblies of magnetic nanoparticles and di-block copolymers: Magnetic micelles and vesicles , 2006 .

[62]  Florence Gazeau,et al.  Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. , 2006, Radiology.

[63]  Frank Bates,et al.  Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. , 2006, Molecular pharmaceutics.

[64]  Sanjiv S Gambhir,et al.  Self-illuminating quantum dot conjugates for in vivo imaging , 2006, Nature Biotechnology.

[65]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[66]  F. Gazeau,et al.  Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging. , 2005, Journal of the American Chemical Society.

[67]  S. Meikle,et al.  Small animal SPECT and its place in the matrix of molecular imaging technologies , 2005, Physics in medicine and biology.

[68]  J. Duerk,et al.  Magnetite‐Loaded Polymeric Micelles as Ultrasensitive Magnetic‐Resonance Probes , 2005 .

[69]  P. Koumoutsakos,et al.  Feature point tracking and trajectory analysis for video imaging in cell biology. , 2005, Journal of structural biology.

[70]  V. Cabuil,et al.  Phase behavior of nanoparticles in a thermotropic liquid crystal. , 2005, The journal of physical chemistry. B.

[71]  Valérie Cabuil,et al.  Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. , 2005, Journal of the American Chemical Society.

[72]  J. Di Meglio,et al.  Shear-induced permeation and fusion of lipid vesicles. , 2005, Journal of colloid and interface science.

[73]  Daniel L Marks,et al.  Optical probes and techniques for molecular contrast enhancement in coherence imaging. , 2005, Journal of biomedical optics.

[74]  Sébastien Lecommandoux,et al.  Smart hybrid magnetic self-assembled micelles and hollow capsules , 2005 .

[75]  A. Roch,et al.  Superparamagnetic colloid suspensions: Water magnetic relaxation and clustering , 2005 .

[76]  H. Hofmann,et al.  Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system , 2005 .

[77]  Dirk Schüler,et al.  Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools , 2005 .

[78]  Olivier Sandre,et al.  Magnetic Nanocomposite Micelles and Vesicles , 2005 .

[79]  O. Mondain-Monval,et al.  Structure of polypeptide-based diblock copolymers in solution: stimuli-responsive vesicles and micelles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[80]  Britton Chance,et al.  Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Francis C Szoka,et al.  Biological evaluation of polyester dendrimer: poly(ethylene oxide) "bow-tie" hybrids with tunable molecular weight and architecture. , 2005, Molecular pharmaceutics.

[82]  Fenghua Meng,et al.  Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[83]  A. Luciani,et al.  Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles , 2005, European Radiology.

[84]  P. Poulin,et al.  Stokes Drag on a Sphere in a Nematic Liquid Crystal , 2004, Science.

[85]  Andreas Manz,et al.  On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. , 2004, Analytical chemistry.

[86]  J. Hainfeld,et al.  The use of gold nanoparticles to enhance radiotherapy in mice. , 2004, Physics in medicine and biology.

[87]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[88]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[89]  Dennis E Discher,et al.  Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[90]  M. Chastellain,et al.  Superparamagnetic Silica‐Iron Oxide Nanocomposites for Application in Hyperthermia , 2004 .

[91]  Z. Lee,et al.  Imaging studies of biodistribution and kinetics in drug development , 2003 .

[92]  Caroline Seydel,et al.  Quantum Dots Get Wet , 2003, Science.

[93]  J. Bulte,et al.  Magnetoliposomes as contrast agents. , 2003, Methods in enzymology.

[94]  R. E. Rosensweig,et al.  Heating magnetic fluid with alternating magnetic field , 2002 .

[95]  Dennis E. Discher,et al.  Polymer Vesicles , 2022 .

[96]  K. O’Grady Biomedical applications of magnetic nanoparticles , 2002 .

[97]  Hitoshi Watarai,et al.  Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system. , 2002, Journal of chromatography. A.

[98]  J. Oberdisse,et al.  Structure of Latex−Silica Nanocomposite Films: A Small-Angle Neutron Scattering Study , 2002 .

[99]  J. Bacri,et al.  Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  Florence Gazeau,et al.  Magnetophoresis and ferromagnetic resonance of magnetically labeled cells , 2002, European Biophysics Journal.

[101]  Y Rabin,et al.  Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? , 2002, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[102]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[103]  P. Babinec,et al.  AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy. , 2002, Bioelectrochemistry.

[104]  O. Kuznetsov,et al.  Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs , 2001 .

[105]  J. Bacri,et al.  Shape transitions of giant liposomes induced by an anisotropic spontaneous curvature. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[106]  J. Bulte,et al.  Preparation, relaxometry, and biokinetics of PEGylated magnetoliposomes as MR contrast agent , 1999 .

[107]  Robert N. Muller,et al.  Theory of proton relaxation induced by superparamagnetic particles , 1999 .

[108]  J. Bacri,et al.  Static magneto-optical birefringence of size-sorted γ-Fe2O3 nanoparticles , 1998 .

[109]  W. Kaiser,et al.  Physical limits of hyperthermia using magnetite fine particles , 1998 .

[110]  T. Xiang,et al.  Phase structures of binary lipid bilayers as revealed by permeability of small molecules. , 1998, Biochimica et biophysica acta.

[111]  H. Cantow,et al.  Factors Affecting the Height and Phase Images in Tapping Mode Atomic Force Microscopy. Study of Phase-Separated Polymer Blends of Poly(ethene-co-styrene) and Poly(2,6-dimethyl-1,4-phenylene oxide) , 1997 .

[112]  Myung-Hwan Whangbo,et al.  Phase imaging and stiffness in tapping-mode atomic force microscopy , 1997 .

[113]  J. Oberdisse,et al.  Vesicles and Onions from Charged Surfactant Bilayers: A Neutron Scattering Study , 1996 .

[114]  J. Bacri,et al.  Flattening of ferro-vesicle undulations under a magnetic field , 1996 .

[115]  J. Di Meglio,et al.  Drug delivery: piercing vesicles by their adsorption onto a porous medium. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[116]  V. Cabuil,et al.  Preparation and properties of monodisperse magnetic fluids , 1995 .

[117]  P. Lindner Neutron, X-ray, and light scattering in the study of “soft matter” , 1993 .

[118]  P. Wust,et al.  Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. , 1993, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[119]  J. Bacri,et al.  Phase diagram of an ionic magnetic colloid: Experimental study of the effect of ionic strength , 1989 .

[120]  R Weissleder,et al.  Superparamagnetic iron oxide: pharmacokinetics and toxicity. , 1989, AJR. American journal of roentgenology.

[121]  W. Burchard,et al.  Dynamic light scattering from spherical particles , 1983 .

[122]  W. Burchard Static and dynamic light scattering from branched polymers and biopolymers , 1983 .

[123]  Gabor A. Somorjai,et al.  Progress in Solid State Chemistry , 1982 .

[124]  R. Massart,et al.  Preparation of aqueous magnetic liquids in alkaline and acidic media , 1981 .

[125]  Roy W. Chantrell,et al.  Measurements of particle size distribution parameters in ferrofluids , 1978 .

[126]  Gif-sur-Yvette , 1967, Radiocarbon.

[127]  G. Berry Thermodynamic and Conformational Properties of Polystyrene. I. Light‐Scattering Studies on Dilute Solutions of Linear Polystyrenes , 1966 .