A tilted‐dipole MHD model of the solar corona and solar wind

[1] We simulate the three-dimensional structure of the heliosphere during solar activity minimum by specifying boundary conditions at the coronal base. We compare the output of the model with Ulysses observations obtained during the spacecraft's first fast latitude transition in 1994–1995. The polytropic MHD equations are solved for a steady coronal outflow that includes the addition of Alfven wave momentum and energy in the WKB approximation. A solution for the outflow in a tilted dipole magnetic field in the inner computational region (1–20 R⊙) is combined with a three-dimensional solution in the outer region which extends to 10 AU. The inner region solution is essentially the same as in the work of Usmanov et al. [2000] but has been obtained for slightly different boundary conditions using a different numerical algorithm. The dipole orientation is chosen to match the one inferred from photospheric magnetic field observations at the Wilcox Solar Observatory. The steady solution in the outer region is constructed using a marching-along-radius method and models both solar rotation and interaction regions. The bimodality of solar wind with a rapid change in flow parameters with latitude and the observed extent of the slower wind belt are reproduced well. We compare our simulation also with the results of Bruno et al. [1986] and empirical models of coronal density. We show that the simulation results are in good agreement with the empirical model of Wang and Sheeley [1990].

[1]  R. Grappin,et al.  Large‐amplitude Alfvén waves in open and closed coronal structures: A numerical study , 2002 .

[2]  P. Isenberg,et al.  Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction , 2002 .

[3]  J. Linker,et al.  An empirically‐driven global MHD model of the solar corona and inner heliosphere , 2001 .

[4]  D. D. Zeeuw,et al.  Global three‐dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere , 2000 .

[5]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[6]  M. Goldstein,et al.  A global MHD solar wind model with WKB Alfvén waves: Comparison with Ulysses data , 2000 .

[7]  Madhulika Guhathakurta,et al.  Semiempirical Two-dimensional MagnetoHydrodynamic Model of the Solar Corona and Interplanetary Medium , 1999 .

[8]  D. A. Roberts,et al.  Alfvén wave phase mixing driven by velocity shear in two‐dimensional open magnetic configurations , 1999 .

[9]  D. Biesecker,et al.  Physical properties of a coronal hole from a coronal diagnostic spectrometer, Mauna Loa Coronagraph, and LASCO observations during the Whole Sun Month , 1999 .

[10]  D. Schnack,et al.  Magnetohydrodynamic modeling of the global solar corona , 1999 .

[11]  S. Suess,et al.  A two-fluid, MHD coronal model , 1999 .

[12]  J. Davila,et al.  Solar wind acceleration by large-amplitude nonlinear waves: Parametric study , 1998 .

[13]  M. Guhathakurta,et al.  Solar Wind Consequences of a Coronal Hole Density Profile: Spartan 201-03 Coronagraph and Ulysses Observations from 1.15 R☉ to 4 AU , 1998 .

[14]  S. Suess,et al.  Global model of the corona with heat and momentum addition , 1998 .

[15]  J. Phillips,et al.  Solar Wind Stream Interactions and the Wind Speed-Expansion Factor Relationship , 1997 .

[16]  S. Bravo,et al.  Latitudinal solar wind velocity variations from polar coronal holes: A self‐consistent MHD model , 1997 .

[17]  T. Horbury,et al.  The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole , 1996 .

[18]  S. Suess,et al.  Latitudinal dependence of the radial IMF component: Coronal imprint , 1996 .

[19]  S. Bravo,et al.  Latitudinal variation of the heliospheric magnetic field during solar minimum , 1996 .

[20]  P. J. Williams,et al.  Rapid acceleration of the polar solar wind , 1996, Nature.

[21]  D. Mccomas,et al.  Ulysses observations of Alfvén waves in the southern and northern solar hemispheres , 1995 .

[22]  S. Suess,et al.  Ulysses solar wind plasma observations from pole to pole , 1995 .

[23]  P. Gazis,et al.  Constraints on solar wind acceleration mechanisms from Ulysses plasma observations: The first polar pass , 1995 .

[24]  J. Davila,et al.  Alfvén wave heating of coronal holes and the relation to the high‐speed solar wind , 1995 .

[25]  W. Feldman,et al.  The band of solar wind variability at low heliographic latitudes near solar activity minimum: Plasma results from the Ulysses rapid latitude scan , 1995 .

[26]  A. Balogh,et al.  Results of the Ulysses fast latitude scan : magnetic field observations , 1995 .

[27]  M. Dryer,et al.  A global 3-D simulation of interplanetary dynamics in June 1991 , 1995 .

[28]  J. Linker,et al.  Large-scale structure of the solar corona and inner heliosphere , 1995 .

[29]  T. Horbury,et al.  The Heliospheric Magnetic Field Over the South Polar Region of the Sun , 1995, Science.

[30]  Edward J. Smith,et al.  The heliospheric plasma sheet , 1994 .

[31]  A. Usmanov The global structure of the solar wind in June 1991 , 1993 .

[32]  A. Usmanov A global numerical 3-D MHD model of the solar wind , 1993 .

[33]  Y.-M. Wang Flux-tube divergence, coronal heating, and the solar wind , 1993 .

[34]  V. Pizzo The evolution of corotating stream fronts near the ecliptic plane in the inner solar system: 2. Three‐dimensional tilted‐dipole fronts , 1991 .

[35]  J. V. Hollweg On WKB expansions for Alfven waves in the solar wind , 1990 .

[36]  N. Sheeley,et al.  Solar wind speed and coronal flux-tube expansion , 1990 .

[37]  D. Hassler,et al.  Line broadening of Mg X 609 and 625 A coronal emission lines observed above the solar limb , 1990 .

[38]  D. Roberts Interplanetary observational constraints on Alfvén wave acceleration of the solar wind , 1989 .

[39]  F. Mariani,et al.  In-situ observations of the latitudinal gradients of the solar wind parameters during 1976 and 1977 , 1986 .

[40]  E. Leer,et al.  A two-fluid solar wind model with Alfven waves - Parameter study and application to observations , 1986 .

[41]  V. Osherovich,et al.  Theoretical model of the solar corona during sunspot minimum. I - Quasi-static approximation , 1984 .

[42]  S. Suess,et al.  The steady global corona , 1982 .

[43]  V. Pizzo A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams , 1979 .

[44]  S. A. Jacques Solar wind models with Alfven waves , 1978 .

[45]  J. Hollweg,et al.  Some physical processes in the solar wind , 1978 .

[46]  S. Suess,et al.  Solar polar coronal hole--a mathematical simulation , 1977 .

[47]  S. A. Jacques Momentum and energy transport by waves in the solar atmosphere and solar wind. , 1977 .

[48]  B. Jackson,et al.  Physical properties of a polar coronal hole from 2 to 5 solar radii , 1977 .

[49]  M. Altschuler,et al.  Solar sources of the interplanetary magnetic field and solar wind , 1977 .

[50]  J. Belcher ALFVÉNIC Wave Pressures and the Solar Wind , 1971 .

[51]  R. Dewar INTERACTION BETWEEN HYDROMAGNETIC WAVES AND A TIME-DEPENDENT, INHOMOGENEOUS MEDIUM. , 1970 .

[52]  J. Linker,et al.  Including the Transition Region in Models of the Large-Scale Solar Corona , 2001 .

[53]  B. Tsurutani,et al.  Recent observations of the heliospheric magnetic field at Ulysses: Return to low latitude , 2000 .

[54]  Du San,et al.  Comparison of Some Flux Corrected Transport and Total Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydrodynamic Problems , 1996 .

[55]  J. Freeman,et al.  An empirical determination of the polytropic index for the free‐streaming solar wind using Helios 1 data , 1995 .

[56]  A. Hundhausen,et al.  Coronal Expansion and Solar Wind , 1972 .

[57]  Robert W. MacCormack,et al.  Numerical solution of the interaction of a shock wave with a laminar boundary layer , 1971 .

[58]  G. Alazraki,et al.  SOLAR-WIND ACCELERATION CAUSED BY THE GRADIENT OF ALFVEN-WAVE PRESSURE. , 1971 .

[59]  R. Kopp,et al.  Gas-magnetic field interactions in the solar corona , 1971 .