Metal Ion Modeling Using Classical Mechanics

Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.

[1]  Donald G Truhlar,et al.  Databases for transition element bonding: metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. , 2005, The journal of physical chemistry. A.

[2]  Timothy Clark,et al.  AM1* parameters for aluminum, silicon, titanium and zirconium , 2005, Journal of molecular modeling.

[3]  Donald G. Truhlar,et al.  New Class IV Charge Model for Extracting Accurate Partial Charges from Wave Functions , 1998 .

[4]  A. Warshel,et al.  Computer simulation of the initial proton transfer step in human carbonic anhydrase I. , 1992, Journal of molecular biology.

[5]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[6]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[7]  Wei Wang,et al.  Molecular simulations of metal-coupled protein folding. , 2015, Current opinion in structural biology.

[8]  H. Koerner,et al.  Force Field for Mica-Type Silicates and Dynamics of Octadecylammonium Chains Grafted to Montmorillonite , 2005 .

[9]  Krishnan Raghavachari,et al.  Gaussian‐1 theory of molecular energies for second‐row compounds , 1990 .

[10]  P. Claverie,et al.  Computations of intermolecular interactions: Expansion of a charge-transfer energy contribution in the framework of an additive procedure. Applications to hydrogen-bonded systems , 1982 .

[11]  Jacopo Tomasi,et al.  The molecular electrostatic potentials for the nucleic acid bases: Adenine, thymine, and cytosine , 1972 .

[12]  E. Marcos,et al.  FIRST-PRINCIPLES ION-WATER INTERACTION POTENTIALS FOR HIGHLY CHARGED MONATOMIC CATIONS. COMPUTER SIMULATIONS OF AL3+, MG2+, AND BE2+ IN WATER , 1999 .

[13]  P. D’Angelo,et al.  A quantum mechanics, molecular dynamics and EXAFS investigation into the Hg2+ ion solvation properties in methanol solution , 2013 .

[14]  Nathan J DeYonker,et al.  A pseudopotential-based composite method: the relativistic pseudopotential correlation consistent composite approach for molecules containing 4d transition metals (Y-Cd). , 2011, The Journal of chemical physics.

[15]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[16]  J. Klinman Mechanisms Whereby Mononuclear Copper Proteins Functionalize Organic Substrates. , 1996, Chemical reviews.

[17]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[18]  Alexander D. MacKerell,et al.  Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for ethers , 2010, Journal of molecular modeling.

[19]  F. R. Parker,et al.  Monte Carlo Equation of State of Molecules Interacting with the Lennard‐Jones Potential. I. A Supercritical Isotherm at about Twice the Critical Temperature , 1957 .

[20]  Anders S. Christensen,et al.  Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization. , 2015, Journal of Chemical Physics.

[21]  E. Clementi,et al.  Coordination number for the Li+–F− ion pair in water , 1975 .

[22]  J. Pople,et al.  Approximate Self‐Consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap , 1965 .

[23]  G. Chan,et al.  Entangled quantum electronic wavefunctions of the Mn₄CaO₅ cluster in photosystem II. , 2013, Nature chemistry.

[24]  S H Kim,et al.  Determinations of atomic partial charges for nucleic acid constituents from x‐ray diffraction data. I. 2′‐Deoxycytidine‐5′‐monophosphate , 1985, Biopolymers.

[25]  A. Zitolo,et al.  Analysis of the detailed configuration of hydrated lanthanoid(III) ions in aqueous solution and crystalline salts by using K- and L(3)-edge XANES spectroscopy. , 2010, Chemistry.

[26]  B. Roux,et al.  Simulations of anionic lipid membranes: development of interaction-specific ion parameters and validation using NMR data. , 2013, The journal of physical chemistry. B.

[27]  Timothy Clark,et al.  AM1* parameters for cobalt and nickel , 2010, Journal of molecular modeling.

[28]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[29]  Francesco Paesani,et al.  Getting the Right Answers for the Right Reasons: Toward Predictive Molecular Simulations of Water with Many-Body Potential Energy Functions. , 2016, Accounts of chemical research.

[30]  V. Pecoraro,et al.  Structural, spectroscopic, and reactivity models for the manganese catalases. , 2004, Chemical reviews.

[31]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[32]  John C. Slater,et al.  Note on Hartree's Method , 1930 .

[33]  G. Mie Zur kinetischen Theorie der einatomigen Körper , 1903 .

[34]  Bernd M. Rode,et al.  Structure and dynamics of hydrated ions—new insights through quantum mechanical simulations , 2003 .

[35]  J. F. Harrison Electronic Structure of Diatomic Molecules Composed of a First‐Row Transition Metal and Main‐Group Element (H—F) , 2000 .

[36]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories , 1955 .

[37]  R. Fausto,et al.  Recent experimental and computational advances in molecular spectroscopy , 1993 .

[38]  O. Teleman,et al.  Molecular Dynamics Simulation of a Small Calcium Complex in Aqueous Solution , 1986 .

[39]  Qiang Zhang,et al.  Study of peptide conformation in terms of the ABEEM/MM method , 2006, J. Comput. Chem..

[40]  R. A. Nistor,et al.  A generalization of the charge equilibration method for nonmetallic materials. , 2006, The Journal of chemical physics.

[41]  S. Bunte,et al.  Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field , 2000 .

[42]  L. Curtiss,et al.  Gaussian-4 theory. , 2007, The Journal of chemical physics.

[43]  R. H. Holm,et al.  The clusters of nitrogenase: synthetic methodology in the construction of weak-field clusters. , 2004, Chemical reviews.

[44]  L. Dang,et al.  Detailed Study of Potassium Solvation Using Molecular Dynamics Techniques , 1999 .

[45]  Nathan J. DeYonker,et al.  Quantitative computational thermochemistry of transition metal species. , 2007, The journal of physical chemistry. A.

[46]  M. Randic,et al.  The theory of intermolecular forces in the region of small orbital overlap , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[47]  Alexander D. MacKerell,et al.  Polarizable empirical force field for nitrogen‐containing heteroaromatic compounds based on the classical Drude oscillator , 2009, J. Comput. Chem..

[48]  B. Averill Dissimilatory Nitrite and Nitric Oxide Reductases. , 1996, Chemical reviews.

[49]  David N. Beratan,et al.  Biochemistry and Theory of Proton-Coupled Electron Transfer , 2014, Chemical reviews.

[50]  A. V. Duin,et al.  Reactive Potentials for Advanced Atomistic Simulations , 2013 .

[51]  Y. Pang,et al.  Small Molecules Showing Significant Protection of Mice against Botulinum Neurotoxin Serotype A , 2010, PloS one.

[52]  D. Crans,et al.  The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. , 2004, Chemical reviews.

[53]  M. Karplus,et al.  Dynamics of ligand binding to heme proteins. , 1979, Journal of molecular biology.

[54]  Molecular Dynamics and X-Ray Diffraction Study of Aqueous Beryllium ( II ) Chloride Solutions , .

[55]  Donald E. Williams,et al.  Alanyl dipeptide potential‐derived net atomic charges and bond dipoles, and their variation with molecular conformation , 1990 .

[56]  Krishnan Raghavachari,et al.  Investigation of Gaussian4 theory for transition metal thermochemistry. , 2009, The journal of physical chemistry. A.

[57]  M. Elstner,et al.  Parametrization and Benchmark of DFTB3 for Organic Molecules. , 2013, Journal of chemical theory and computation.

[58]  Frank Weinhold,et al.  Natural resonance theory: I. General formalism , 1998, J. Comput. Chem..

[59]  Gerald Geudtner,et al.  MSINDO parameterization for third‐row transition metals , 2001, J. Comput. Chem..

[60]  E. Clementi,et al.  Simulations of the solvent structure for macromolecules. III. Determination of the Na+ counter ion structure , 1982, Biopolymers.

[61]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[62]  Chongli Zhong,et al.  A General Approach for Estimating Framework Charges in Metal−Organic Frameworks , 2010 .

[63]  Pengyu Y. Ren,et al.  Classical electrostatics for biomolecular simulations. , 2014, Chemical reviews.

[64]  K. Tang,et al.  New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems , 1986 .

[65]  William L. Jorgensen,et al.  Free energy of TIP4P water and the free energies of hydration of CH4 and Cl- from statistical perturbation theory , 1989 .

[66]  Darrin M York,et al.  Force Field for Mg(2+), Mn(2+), Zn(2+), and Cd(2+) Ions That Have Balanced Interactions with Nucleic Acids. , 2015, The journal of physical chemistry. B.

[67]  A. V. van Duin,et al.  ReaxFF(MgH) reactive force field for magnesium hydride systems. , 2005, The journal of physical chemistry. A.

[68]  Kenneth M Merz,et al.  Insights into Cu(I) exchange in HAH1 using quantum mechanical and molecular simulations. , 2007, Biochemistry.

[69]  A. V. van Duin,et al.  Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. , 2005, The journal of physical chemistry. A.

[70]  N. Rösch,et al.  Intermediate neglect of differential overlap spectroscopic studies on lanthanide complexes , 1992 .

[71]  E. Clementi,et al.  Study of the structure of molecular complexes. Coordination numbers for Li+, Na+, K+, F− and Cl− in water , 1978 .

[72]  K. Merz,et al.  AM1 parameters for zinc , 1988 .

[73]  Christian Schröder,et al.  Comparing reduced partial charge models with polarizable simulations of ionic liquids. , 2012, Physical chemistry chemical physics : PCCP.

[74]  Ruibo Wu,et al.  Thiol versus hydroxamate as zinc binding group in HDAC inhibition: An Ab initio QM/MM molecular dynamics study , 2015, J. Comput. Chem..

[75]  Julia M. Goodfellow,et al.  Molecular dynamics study , 1997 .

[76]  R. Bonaccorsi,et al.  N- versus O-proton affinities of the amide group: Ab initio electrostatic molecular potentials , 1972 .

[77]  B. Szigeti Compressibility and absorption frequency of ionic crystals , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[78]  C. Kong Combining rules for intermolecular potential parameters. II. Rules for the Lennard‐Jones (12–6) potential and the Morse potential , 1973 .

[79]  Nohad Gresh,et al.  Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA‐LF , 2003, J. Comput. Chem..

[80]  Anna E. Anastasi,et al.  An in silico design tool for Fe(II) spin crossover and light-induced excited spin state-trapped complexes. , 2010, Journal of the American Chemical Society.

[81]  Molecular mechanics analysis of the influence of interligand interactions on isomer stabilities and barriers to isomer interconversion in diammine- and bis(amine)bis(purine)platinum(II) complexes , 1988 .

[82]  Jacopo Tomasi,et al.  Theoretical investigations on the solvation process , 1971 .

[83]  C. Lim,et al.  Empirical force fields for biologically active divalent metal cations in water. , 2006, The journal of physical chemistry. A.

[84]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[85]  Walter Thiel,et al.  Semiempirical quantum–chemical methods , 2014 .

[86]  Nohad Gresh,et al.  Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo‐β‐lactamase by polarizable molecular mechanics. Validation on model binding sites by quantum chemistry , 2005, J. Comput. Chem..

[87]  Robert James Deeth,et al.  A test of ligand field molecular mechanics as an efficient alternative to QM/MM for modelling metalloproteins: the structures of oxidised type I copper centres. , 2006, Chemical communications.

[88]  Frank A. Momany,et al.  Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid , 1978 .

[89]  J. Klinman,et al.  Hydrogen-Transfer Reactions , 2006 .

[90]  V. Barone,et al.  Structural and dynamical properties of the Hg2+ aqua ion: a molecular dynamics study. , 2008, The journal of physical chemistry. B.

[91]  Peter Comba,et al.  Molecular mechanics and the Jahn-Teller effect , 1994 .

[92]  Stefano Corni,et al.  GolP: An atomistic force‐field to describe the interaction of proteins with Au(111) surfaces in water , 2009, J. Comput. Chem..

[93]  R. T. Sanderson,et al.  An Interpretation of Bond Lengths and a Classification of Bonds. , 1951, Science.

[94]  Elizabeth A. Amin,et al.  Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory. , 2008, Journal of chemical theory and computation.

[95]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[96]  J. Seminario,et al.  Ab Initio Analysis of Silicon Nano-Clusters , 2014 .

[97]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[98]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[99]  R. Hausinger,et al.  Biosynthesis of metal sites. , 2004, Chemical reviews.

[100]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I: The Huggins-Mayer and Pauling forms , 1964 .

[101]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[102]  William L. Jorgensen,et al.  OPLS all‐atom force field for carbohydrates , 1997 .

[103]  Mona S. Minkara,et al.  Molecular Dynamics Study of Helicobacter pylori Urease , 2014, Journal of chemical theory and computation.

[104]  Neeraj Rai,et al.  Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds. , 2007, The journal of physical chemistry. B.

[105]  Nathan J DeYonker,et al.  The correlation consistent composite approach (ccCA): an alternative to the Gaussian-n methods. , 2006, The Journal of chemical physics.

[106]  Ulrich Baxa,et al.  Roles of Calcium Ions in the Activation and Activity of the Transglutaminase 3 Enzyme* , 2003, Journal of Biological Chemistry.

[107]  E. Marcos,et al.  Understanding the hydration structure of square-planar aquaions: The [Pd(H2O)4]2+ case , 2004 .

[108]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[109]  Donald E. Williams,et al.  Representation of the molecular electrostatic potential by a net atomic charge model , 1981 .

[110]  M. Karplus,et al.  Simulation of activation free energies in molecular systems , 1996 .

[111]  Alexander D. MacKerell,et al.  CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. , 2015, Biochimica et biophysica acta.

[112]  Y. Pang,et al.  Computer-Aided Lead Optimization: Improved Small-Molecule Inhibitor of the Zinc Endopeptidase of Botulinum Neurotoxin Serotype A , 2007, PloS one.

[113]  J. Faraldo-Gómez,et al.  Polarizable model of chloroform based on classical Drude oscillators , 2009 .

[114]  P. H. Smith,et al.  Intermolecular interactions in crystals of carboxylic acids , 1979 .

[115]  Kevin E. Riley,et al.  Assessment of density functional theory methods for the computation of heats of formation and ionization potentials of systems containing third row transition metals. , 2007, The journal of physical chemistry. A.

[116]  S. Manivasagam,et al.  Multireference Character for 4d Transition Metal-Containing Molecules. , 2015, Journal of chemical theory and computation.

[117]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[118]  W. Hogervorst Transport and equilibrium properties of simple gases and forces between like and unlike atoms , 1971 .

[119]  A. E. Carlsson ANGULAR FORCES AROUND TRANSITION METALS IN BIOMOLECULES , 1998 .

[120]  Jorge M. Seminario,et al.  Calculation of intramolecular force fields from second‐derivative tensors , 1996 .

[121]  Julian Tirado-Rives,et al.  Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. , 2006, Bioorganic & medicinal chemistry letters.

[122]  V. N. Kokorev,et al.  Extension of the PM3 Method on s,p,d Basis. Test Calculations on Organochromium Compounds , 1996 .

[123]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies , 1955 .

[124]  Li-Dong Gong Development and applications of the ABEEM fluctuating charge molecular force field in the ion-containing systems , 2012, Science China Chemistry.

[125]  Y. W. Yang,et al.  Net atomic charges and molecular dipole moments from spherical‐atom X‐ray refinements, and the relation between atomic charge and shape , 1979 .

[126]  S. Lifson,et al.  Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. , 1974, Journal of the American Chemical Society.

[127]  Max Born,et al.  Zur Gittertheorie der Ionenkristalle , 1932 .

[128]  Terry P. Lybrand,et al.  Hydration of chloride and bromide anions: determination of relative free energy by computer simulation , 1985 .

[129]  C. Daul,et al.  Full‐CI quantum chemistry using the density matrix renormalization group , 1999 .

[130]  Claude Lecomte,et al.  On Building a Data Bank of Transferable Experimental Electron Density Parameters Applicable to Polypeptides , 1995 .

[131]  R. Frankel,et al.  Synthetic analogues of the active sites of iron-sulfur proteins. , 1976, Chemical reviews.

[132]  J. Renuncio,et al.  Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long‐range dispersion energy and an atomic distortion model for the repulsive interactions. , 1982 .

[133]  E. Clementi,et al.  Study of the structure of molecular complexes. II. Energy surfaces for a water molecule in the field of a sodium or potassium cation , 1973 .

[134]  Rajiv K. Kalia,et al.  DYNAMICS OF OXIDATION OF ALUMINUM NANOCLUSTERS USING VARIABLE CHARGE MOLECULAR-DYNAMICS SIMULATIONS ON PARALLEL COMPUTERS , 1999 .

[135]  Samuel H. Wilson,et al.  Magnesium-cationic dummy atom molecules enhance representation of DNA polymerase beta in molecular dynamics simulations: improved accuracy in studies of structural features and mutational effects. , 2007, Journal of molecular biology.

[136]  T. Clark,et al.  AM1* parameters for palladium and silver , 2011, Journal of molecular modeling.

[137]  D. Schwarzenbach,et al.  Electric field gradients and charge density in corundum, α-Al2O3 , 1982 .

[138]  V. Fock,et al.  „Selfconsistent field“ mit Austausch für Natrium , 1930 .

[139]  B. Randolf,et al.  Hydration of highly charged ions , 2011, Chemical physics letters.

[140]  D. Truhlar,et al.  Performance of Effective Core Potentials for Density Functional Calculations on 3d Transition Metals. , 2012, Journal of chemical theory and computation.

[141]  James J. P. Stewart,et al.  Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters , 2012, Journal of Molecular Modeling.

[142]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[143]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[144]  Sebastian Riedel,et al.  The highest oxidation states of the transition metal elements , 2009 .

[145]  S H Kim,et al.  Atomic charges for DNA constituents derived from single-crystal X-ray diffraction data. , 1990, Journal of molecular biology.

[146]  R. Ho,et al.  Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. , 1996, Chemical reviews.

[147]  A Aubry,et al.  Transferability of multipole charge-density parameters: application to very high resolution oligopeptide and protein structures. , 1998, Acta crystallographica. Section D, Biological crystallography.

[148]  Philip Coppens,et al.  Testing aspherical atom refinements on small-molecule data sets , 1978 .

[149]  Joseph A. Bank,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 Table S1 References Movies S1 to S3 Atomic-level Characterization of the Structural Dynamics of Proteins , 2022 .

[150]  Lisa Hartman,et al.  Charge Transfer Models of Zinc and Magnesium in Water. , 2015, Journal of chemical theory and computation.

[151]  H. Schaefer,et al.  Is the uniform electron gas limit important for small Ag clusters? Assessment of different density functionals for Ag(n) (n < or = 4). , 2006, The Journal of chemical physics.

[152]  F. Illas,et al.  Establishing the Accuracy of Broadly Used Density Functionals in Describing Bulk Properties of Transition Metals. , 2013, Journal of chemical theory and computation.

[153]  Preface: Bioinorganic Enzymology. , 1996, Chemical reviews.

[154]  Francesc Illas,et al.  Decomposition of the chemisorption bond by constrained variations: Order of the variations and construction of the variational spaces , 1992 .

[155]  Frank Weinhold,et al.  Natural resonance theory: II. Natural bond order and valency , 1998, J. Comput. Chem..

[156]  Ananth Grama,et al.  Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques , 2012, Parallel Comput..

[157]  M Karplus,et al.  Mechanism of tertiary structural change in hemoglobin. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[158]  Dhruva K. Chakravorty,et al.  Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. , 2011, Journal of the American Chemical Society.

[159]  M. Filatov,et al.  CNDO-S2—a semiempirical SCF MO method for transition metal organometallics , 1987 .

[160]  R. Glen,et al.  Anti-cancer drug development: computational strategies to identify and target proteins involved in cancer metabolism. , 2012, Current pharmaceutical design.

[161]  P. Claverie,et al.  Improvements of the continuum model. 1. Application to the calculation of the vaporization thermodynamic quantities of nonassociated liquids , 1988 .

[162]  G. Charles Dismukes,et al.  Manganese Enzymes with Binuclear Active Sites. , 1996, Chemical reviews.

[163]  Gregory A Voth,et al.  Chemical rescue of enzymes: proton transfer in mutants of human carbonic anhydrase II. , 2011, Journal of the American Chemical Society.

[164]  H. Heinz,et al.  Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. , 2016, Chemical Society reviews.

[165]  R. Thauer,et al.  Reactions with Molecular Hydrogen in Microorganisms: Evidence for a Purely Organic Hydrogenation Catalyst. , 1996, Chemical reviews.

[166]  D. Rees,et al.  Structural Basis of Biological Nitrogen Fixation. , 1996, Chemical reviews.

[167]  E. Marcos,et al.  Hydration Structure and Dynamic Properties of the Square Planar Pt(II) Aquaion Compared to the Pd(II) Case , 2006 .

[168]  J. Stewart Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi , 1991 .

[169]  R. E. Richards,et al.  195 Pt–31P nuclear spin coupling constants and the nature of the trans-effect in platinum complexes , 1966 .

[170]  Y. Pang,et al.  Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach. , 2000, Protein science : a publication of the Protein Society.

[171]  Carmay Lim,et al.  Zn protein simulations including charge transfer and local polarization effects. , 2005, Journal of the American Chemical Society.

[172]  Guillaume Lamoureux,et al.  Molecular Dynamics Investigation of Alkali Metal Ions in Liquid and Aqueous Ammonia. , 2013, Journal of chemical theory and computation.

[173]  S. Aoki,et al.  Zinc-nucleic acid interaction. , 2004, Chemical reviews.

[174]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules. , 2011, Journal of chemical theory and computation.

[175]  Alexander D. MacKerell,et al.  CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model , 2004, J. Comput. Chem..

[176]  P. Winget,et al.  Charge Model 3: A class IV Charge Model based on hybrid density functional theory with variable exchange , 2002 .

[177]  Peter Schwerdtfeger,et al.  Convergence of the many-body expansion of interaction potentials: From van der Waals to covalent and metallic systems , 2007 .

[178]  V. Yachandra,et al.  Manganese Cluster in Photosynthesis: Where Plants Oxidize Water to Dioxygen. , 1996, Chemical reviews.

[179]  N. Gresh,et al.  Energy Analysis of Zn Polycoordination in a Metalloprotein Environment and of the Role of a Neighboring Aromatic Residue. What Is the Impact of Polarization? , 2008, Journal of chemical theory and computation.

[180]  Xin Li,et al.  Study of lithium cation in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics. , 2005, The journal of physical chemistry. A.

[181]  Anastassia N Alexandrova,et al.  Polarization Effects for Hydrogen-Bonded Complexes of Substituted Phenols with Water and Chloride Ion. , 2007, Journal of chemical theory and computation.

[182]  M. Blomberg,et al.  Quantum chemical studies of mechanisms for metalloenzymes. , 2014, Chemical reviews.

[183]  Donald G Truhlar,et al.  Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases. , 2012, Journal of chemical theory and computation.

[184]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[185]  Sudhir B. Kylasa,et al.  Reactive Molecular Dynamics on Massively Parallel Heterogeneous Architectures , 2017, IEEE Transactions on Parallel and Distributed Systems.

[186]  Jian Li,et al.  Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems. , 2004, Chemical reviews.

[187]  Thomas Frauenheim,et al.  Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional Tight-Binding (DFTB) Method:  Sc, Ti, Fe, Co, and Ni. , 2007, Journal of chemical theory and computation.

[188]  Peter A. Kollman,et al.  Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins , 1995, J. Comput. Chem..

[189]  Yang Zhongzhi,et al.  Molecular dynamics study on BPTI aqueous solution by ABEEM/MM fluctuating charge model , 2008 .

[190]  Yue Shi,et al.  Multipole electrostatics in hydration free energy calculations , 2011, J. Comput. Chem..

[191]  F. Weinhold,et al.  Natural population analysis , 1985 .

[192]  T. Simanouti The Normal Vibrations of Polyatomic Molecules as Treated by Urey‐Bradley Field , 1949 .

[193]  K. Merz,et al.  Transferability of ion models , 1993 .

[194]  Jenn-Huei Lii,et al.  Alcohols, ethers, carbohydrates, and related compounds. III. The 1,2‐dimethoxyethane system , 2003, J. Comput. Chem..

[195]  J. Valentine,et al.  Superoxide Dismutases and Superoxide Reductases , 2014, Chemical reviews.

[196]  G. Lamoureux,et al.  Cation-π and π-π Interactions in Aqueous Solution Studied Using Polarizable Potential Models. , 2012, Journal of chemical theory and computation.

[197]  W. L. Jorgensen Quantum and statistical mechanical studies of liquids. 3. Deriving intermolecular potential functions for the water dimer from ab initio calculations , 1979 .

[198]  W. R. Robinson,et al.  Mononuclear and Polynuclear Chemistry of Rhenium (III): Its Pronounced Homophilicity , 1964, Science.

[199]  Harold S. Johnston,et al.  Activation Energies from Bond Energies. I. Hydrogen Transfer Reactions , 1963 .

[200]  G. L. Mar,et al.  The angular overlap model. How to use it and why , 1974 .

[201]  Donald G Truhlar,et al.  Tests of Exchange-Correlation Functional Approximations Against Reliable Experimental Data for Average Bond Energies of 3d Transition Metal Compounds. , 2013, Journal of chemical theory and computation.

[202]  Joshua D. Deetz,et al.  Parallel optimization of a reactive force field for polycondensation of alkoxysilanes. , 2014, The journal of physical chemistry. B.

[203]  Clark R. Landis,et al.  Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes. 2. Applications to Hypervalent Molecules of the P-Block , 1993 .

[204]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[205]  G. Halsey,et al.  Second Virial Coefficients of Argon, Krypton, and Argon‐Krypton Mixtures at Low Temperatures , 1962 .

[206]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[207]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[208]  Zhong-Zhi Yang,et al.  Atom-Bond Electronegativity Equalization Method Fused into Molecular Mechanics. II. A Seven-Site Fluctuating Charge and Flexible Body Water Potential Function for Liquid Water , 2004 .

[209]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[210]  Walter Thiel,et al.  Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results , 1992 .

[211]  C. Cramer,et al.  Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. , 1999, Chemical reviews.

[212]  P. Greengard,et al.  Activation/deactivation of renal Na+,K+‐ATPase: a final common pathway for regulation of natriuresis , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[213]  M. Zerner,et al.  Utility of the semiempirical INDO/1 method for the calculation of the geometries of second-row transition-metal species , 1990 .

[214]  W. Thiel,et al.  Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results , 1992 .

[215]  R. Netz,et al.  Ionic force field optimization based on single-ion and ion-pair solvation properties: going beyond standard mixing rules. , 2012, The Journal of chemical physics.

[216]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[217]  J. Tomasi,et al.  Hydration shell structure of the calcium ion from simulations with ab initio effective pair potentials , 1994 .

[218]  Alexander D. MacKerell,et al.  An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications , 2016, Chemical reviews.

[219]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[220]  V. Babin,et al.  Development of a "First Principles" Water Potential with Flexible Monomers. II: Trimer Potential Energy Surface, Third Virial Coefficient, and Small Clusters. , 2014, Journal of chemical theory and computation.

[221]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[222]  N. Kaltsoyannis,et al.  Principles and Applications of Density Functional Theory in Inorganic Chemistry Ii , 2010 .

[223]  P. Fernandes,et al.  Molecular Dynamics Simulations: Difficulties, Solutions and Strategies for Treating Metalloenzymes , 2010 .

[224]  Thomas E. Cheatham,et al.  Quantum mechanically derived AMBER‐compatible heme parameters for various states of the cytochrome P450 catalytic cycle , 2012, J. Comput. Chem..

[225]  Nohad Gresh,et al.  Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short‐range contributions. Comparisons with parallel ab initio computations , 2005, J. Comput. Chem..

[226]  Marshall N. Rosenbluth,et al.  Further Results on Monte Carlo Equations of State , 1954 .

[227]  S J Weiner,et al.  Molecular dynamics simulations of d(C-G-C-G-A) X d(T-C-G-C-G) with and without "hydrated" counterions. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[228]  L. E. Chirlian,et al.  Atomic charges derived from electrostatic potentials: A detailed study , 1987 .

[229]  Donald G Truhlar,et al.  Density functional theory for transition metals and transition metal chemistry. , 2009, Physical chemistry chemical physics : PCCP.

[230]  J. Renuncio,et al.  Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long‐range dispersion energy , 1982 .

[231]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[232]  D. Bounds A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Ca++, Ni++ and Cl- , 1985 .

[233]  S. Batsanov Ionic radii for aqueous solutions , 1963 .

[234]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[235]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations , 1955 .

[236]  A. Stuchebrukhov,et al.  Electronic continuum model for molecular dynamics simulations of biological molecules. , 2010, Journal of chemical theory and computation.

[237]  Geoffrey C. Martin-Noble,et al.  EQeq+C: An Empirical Bond-Order-Corrected Extended Charge Equilibration Method. , 2015, Journal of chemical theory and computation.

[238]  Erik L. G. Wernersson,et al.  Accurate description of aqueous carbonate ions: an effective polarization model verified by neutron scattering. , 2012, The journal of physical chemistry. B.

[239]  E. Marcos,et al.  Coupling a polarizable water model to the hydrated ion–water interaction potential: A test on the Cr3+ hydration , 2000 .

[240]  K. Merz,et al.  Reply to comment on "transferability of ion models" , 1994 .

[241]  Alison G. Tebo,et al.  Protein design: toward functional metalloenzymes. , 2014, Chemical reviews.

[242]  J. Pople,et al.  Approximate Self‐Consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems , 1966 .

[243]  M. Levitt,et al.  Refinement of protein conformations using a macromolecular energy minimization procedure. , 1969, Journal of molecular biology.

[244]  Chun Wu,et al.  Assessing the Performance of Popular Quantum Mechanics and Molecular Mechanics Methods and Revealing the Sequence-Dependent Energetic Features Using 100 Tetrapeptide Models , 2010 .

[245]  Robert K Szilagyi,et al.  Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. , 2004, Chemical reviews.

[246]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[247]  K. Merz,et al.  Analysis of a large data base of electrostatic potential derived atomic charges , 1992 .

[248]  M Karplus,et al.  Zinc binding in proteins and solution: A simple but accurate nonbonded representation , 1995, Proteins.

[249]  Bing Wang,et al.  Simulations of allosteric motions in the zinc sensor CzrA. , 2012, Journal of the American Chemical Society.

[250]  P. Claverie,et al.  Theoretical studies of molecular conformation. Derivation of an additive procedure for the computation of intramolecular interaction energies. Comparison withab initio SCF computations , 1984 .

[251]  Karl Jug,et al.  Extension of SINDO1 to transition metal compounds , 1992 .

[252]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[253]  Kenneth M. Merz,et al.  CO2 binding to human carbonic anhydrase II , 1991 .

[254]  E. Marcos,et al.  Application of the Hydrated Ion Concept for Modeling Aqueous Solutions Containing Highly Charged Ions: A Monte Carlo Simulation of Cr3+ in Water Using an ab Initio Intermolecular Potential† , 1996 .

[255]  Michael Gaus,et al.  Parametrization of DFTB3/3OB for Magnesium and Zinc for Chemical and Biological Applications , 2014, The journal of physical chemistry. B.

[256]  E. Marcos,et al.  A molecular dynamics study of the Cr3+ hydration based on a fully flexible hydrated ion model , 1998 .

[257]  J. Dawson,et al.  Heme-Containing Oxygenases. , 1996, Chemical reviews.

[258]  C. David Sherrill,et al.  Full configuration interaction potential energy curves for the X 1Σg+, B 1Δg, and B′ 1Σg+ states of C2: A challenge for approximate methods , 2004 .

[259]  Thomas A. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[260]  I. Zilberberg,et al.  NDDO/MC: A new semiempirical SCFMO method for transition metal complexes , 1992 .

[261]  B. Roos The Ground State Potential for the Chromium Dimer Revisited , 2003 .

[262]  V Lamzin,et al.  Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[263]  Alexander D. MacKerell,et al.  Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model. , 2011, The journal of physical chemistry. B.

[264]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[265]  G. Frenking,et al.  The nature of the bonding in transition-metal compounds. , 2000, Chemical reviews.

[266]  D Fincham,et al.  Shell model simulations by adiabatic dynamics , 1993 .

[267]  A. Garcia,et al.  Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations , 2014, The journal of physical chemistry. B.

[268]  Julian Müller,et al.  Efficient global optimization of reactive force‐field parameters , 2015, J. Comput. Chem..

[269]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[270]  Alexander D. MacKerell,et al.  Polarizable Empirical Force Field for Hexopyranose Monosaccharides Based on the Classical Drude Oscillator , 2014, The journal of physical chemistry. B.

[271]  Volodymyr Babin,et al.  Development of a "First-Principles" Water Potential with Flexible Monomers. III. Liquid Phase Properties. , 2014, Journal of chemical theory and computation.

[272]  Thomas A. Halgren Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94 , 1996, J. Comput. Chem..

[273]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[274]  Shina Caroline Lynn Kamerlin,et al.  Development and Application of a Nonbonded Cu2+ Model That Includes the Jahn–Teller Effect , 2015, The journal of physical chemistry letters.

[275]  Karl Jug,et al.  SINDO1 II. Application to ground states of molecules containing carbon, nitrogen and oxygen atoms , 1980 .

[276]  W. Jensen Electronegativity from Avogadro to Pauling: II. Late Nineteenth- and Early Twentieth-Century Developments. , 2003 .

[277]  M. Levitt The birth of computational structural biology , 2001, Nature Structural Biology.

[278]  K. Merz,et al.  MNDO calculations for compounds containing mercury , 1985 .

[279]  K M Merz,et al.  Molecular dynamics simulations of the mononuclear zinc-beta-lactamase from Bacillus cereus. , 2001, Journal of the American Chemical Society.

[280]  Junmei Wang,et al.  Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A. Case, "Development and testing of a general amber force field"Journal of Computational Chemistry(2004) 25(9) 1157–1174 , 2005, J. Comput. Chem..

[281]  Thomas Frauenheim,et al.  Modeling zinc in biomolecules with the self consistent charge‐density functional tight binding (SCC‐DFTB) method: Applications to structural and energetic analysis , 2003, J. Comput. Chem..

[282]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[283]  Jesse G. McDaniel,et al.  Robust, Transferable, and Physically Motivated Force Fields for Gas Adsorption in Functionalized Zeolitic Imidazolate Frameworks , 2012 .

[284]  Ulf Ryde,et al.  Comparison of Methods to Obtain Force-Field Parameters for Metal Sites. , 2011, Journal of chemical theory and computation.

[285]  William B Tolman,et al.  Reactivity of dioxygen-copper systems. , 2004, Chemical reviews.

[286]  B. Burgess,et al.  Mechanism of Molybdenum Nitrogenase. , 1996, Chemical reviews.

[287]  Herman J. C. Berendsen,et al.  A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: The water-water interaction , 2000 .

[288]  T. Cundari,et al.  Calculation of the enthalpies of formation for transition metal complexes , 2005 .

[289]  Jacopo Tomasi,et al.  Molecular SCF Calculations for the Ground State of Some Three‐Membered Ring Molecules: (CH2)3, (CH2)2NH, (CH2)2NH2+, (CH2)2O, (CH2)2S, (CH)2CH2, and N2CH2 , 1970 .

[290]  Alexander D. MacKerell,et al.  Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. , 2007, Journal of chemical theory and computation.

[291]  M. Karplus,et al.  Role of Electrostatics in the Structure, Energy, and Dynamics of Biomolecules: A Model Study of N-Methylalanylacetamide , 1985 .

[292]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[293]  R. T. Sanderson An Interpretation of Bond Lengths in Alkali Halide Gas Molecules , 1952 .

[294]  F. Illas,et al.  Bulk Properties of Transition Metals: A Challenge for the Design of Universal Density Functionals. , 2014, Journal of chemical theory and computation.

[295]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[296]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard-Jones parameters , 1998, J. Comput. Chem..

[297]  Pengyu Y. Ren,et al.  The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins. , 2013, Journal of chemical theory and computation.

[298]  Zhong-Zhi Yang,et al.  Atom–bond electronegativity equalization method. II. Lone-pair electron model , 1999 .

[299]  Michael C. Zerner,et al.  Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines , 1976 .

[300]  P. Comba Metal ion selectivity and molecular modeling , 1999 .

[301]  William A. Goddard,et al.  Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts (The Journal of Physical Chemistry A (2008) 112C) , 2008 .

[302]  Atsuyuki Suzuki,et al.  Quantum Mechanical and Molecular Dynamical Simulations on Thorium(IV) Hydrates in Aqueous Solution , 2001 .

[303]  S. Hamad,et al.  Atomic charges for modeling metal–organic frameworks: Why and how , 2015, 1802.08771.

[304]  A. Warshel,et al.  Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes , 1970 .

[305]  E. Solomon,et al.  Preface: biomimetic inorganic chemistry. , 2004, Chemical reviews.

[306]  C. R. Mann The Theory of Optics , 1903, Nature.

[307]  Xin Li,et al.  Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field. , 2005, The journal of physical chemistry. A.

[308]  F. Hund Zur Frage der chemischen Bindung , 1932 .

[309]  S. Lifson,et al.  Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C:O.cntdot..cntdot..cntdot.H- hydrogen bonds , 1979 .

[310]  Melanie Keller,et al.  Essentials Of Computational Chemistry Theories And Models , 2016 .

[311]  Volodymyr Babin,et al.  Development of a "First Principles" Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient. , 2014, Journal of chemical theory and computation.

[312]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[313]  Kenneth M. Merz,et al.  Force Field Design for Metalloproteins , 1991 .

[314]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[315]  G. Chillemi,et al.  Revised ionic radii of lanthanoid(III) ions in aqueous solution. , 2011, Inorganic chemistry.

[316]  Paul S. Bagus,et al.  A new analysis of charge transfer and polarization for ligand–metal bonding: Model studies of Al4CO and Al4NH3 , 1984 .

[317]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[318]  B. Szigeti Polarisability and dielectric constant of ionic crystals , 1949 .

[319]  J. L. Skinner,et al.  A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions. , 2014, The Journal of chemical physics.

[320]  Pedro E. M. Lopes,et al.  Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications , 2009, Theoretical chemistry accounts.

[321]  S. Lifson,et al.  Energy functions for peptides and proteins. II. The amide hydrogen bond and calculation of amide crystal properties. , 1974, Journal of the American Chemical Society.

[322]  Ib Chorkendorff,et al.  Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. , 2014, Nature chemistry.

[323]  Jenn-Huei Lii,et al.  The MM3 force field for amides, polypeptides and proteins , 1991 .

[324]  M. Gillan,et al.  Shell-model molecular dynamics simulation of superionic conduction in CaF2 , 1993 .

[325]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[326]  R. Deeth Molecular Modelling for Systems Containing Transition Metal Centres , 2010 .

[327]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .

[328]  Xiao He,et al.  Nonseparable exchange-correlation functional for molecules, including homogeneous catalysis involving transition metals. , 2015, Physical chemistry chemical physics : PCCP.

[329]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[330]  Frank Weinhold,et al.  Natural resonance theory: III. Chemical applications , 1998, J. Comput. Chem..

[331]  R. Bonaccorsi,et al.  Molecular SCF calculations for the ground state of some three-membered ring molecules: Cis and trans diaziridine, oxaziridine and the corresponding imminium ions , 1971 .

[332]  Clark R. Landis,et al.  Molecular Mechanics Force Fields for Modeling Inorganic and Organometallic Compounds , 2007 .

[333]  Y. Pang,et al.  Serotype-selective, small-molecule inhibitors of the zinc endopeptidase of botulinum neurotoxin serotype A. , 2006, Bioorganic & medicinal chemistry.

[334]  Determination of precise harmonic force constants for alanine polypeptides , 2007 .

[335]  Clark R. Landis,et al.  VALENCE BOND CONCEPTS APPLIED TO THE MOLECULAR MECHANICS DESCRIPTION OF MOLECULAR SHAPES. 3. APPLICATIONS TO TRANSITION METAL ALKYLS AND HYDRIDES , 1998 .

[336]  Zhong-Zhi Yang,et al.  General atom-bond electronegativity equalization method and its application in prediction of charge distributions in polypeptide , 2000 .

[337]  Guntram Rauhut,et al.  Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields , 1995 .

[338]  Alexander D. MacKerell,et al.  Polarizable empirical force field for alkanes based on the classical Drude oscillator model. , 2005, The journal of physical chemistry. B.

[339]  R. K. Mishra,et al.  Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[340]  S. Batsanov,et al.  Van der Waals Radii of Elements , 2001 .

[341]  Nohad Gresh,et al.  Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies , 2012, Theoretical Chemistry Accounts.

[342]  J. Onuchic,et al.  Theory and Practice of Electron Transfer Within Protein-Protein Complexes: Application to the Multidomain Binding of Cytochrome c by Cytochrome c Peroxidase , 1997 .

[343]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[344]  Marcel Nooijen,et al.  The density matrix renormalization group self-consistent field method: orbital optimization with the density matrix renormalization group method in the active space. , 2008, The Journal of chemical physics.

[345]  Norman L. Allinger,et al.  Molecular mechanics parameters , 1994 .

[346]  H. H. Jaffé,et al.  ELECTRONEGATIVITY. IV. ORBITAL ELECTRONEGATIVITIES OF THE NEUTRAL ATOMS OF THE PERIODS THREE A AND FOUR A AND OF POSITIVE IONS OF PERIODS ONE AND TWO , 1963 .

[347]  S J Wodak,et al.  Calculations of electrostatic properties in proteins. Analysis of contributions from induced protein dipoles. , 1987, Journal of molecular biology.

[348]  L. Que,et al.  Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. , 2004, Chemical reviews.

[349]  Gábor Csányi,et al.  Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions , 2016, Chemical reviews.

[350]  U. Ryde,et al.  Molecular dynamics simulations of alcohol dehydrogenase with a four‐ or five‐coordinate catalytic zinc ion , 1995, Proteins.

[351]  Dhruva K. Chakravorty,et al.  Structure and dynamics of the N-terminal domain of the Cu(I) binding protein CusB. , 2013, Biochemistry.

[352]  K. Merz,et al.  Calculation of Heats of Formation for Zn Complexes: Comparison of Density Functional Theory, Second Order Perturbation Theory, Coupled-Cluster and Complete Active Space Methods. , 2013, Journal of chemical theory and computation.

[353]  Tzu-Ray Shan,et al.  Variable charge many-body interatomic potentials , 2012 .

[354]  P. Vanhoutte,et al.  Role of potassium in regulating blood flow and blood pressure. , 2006, American journal of physiology. Regulatory, integrative and comparative physiology.

[355]  W. Person,et al.  Experimental and Ab Initio Quantum Mechanical Studies of the Vibrational Spectra of Isolated Pyrimidine Bases , 1993 .

[356]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[357]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[358]  S. Xantheas,et al.  Interaction potential of Al3+ in water from first principles calculations , 1997 .

[359]  Ground states of molecules. Part 84. MNDO calculations for compounds containing zinc , 1986 .

[360]  A. Tani,et al.  A study of aqueous solutions of lanthanide ions by molecular dynamics simulation with ab initio effective pair potentials , 2001 .

[361]  E. Clementi,et al.  Non-additivity in water-ion-water interactions , 1980 .

[362]  A. V. van Duin,et al.  Reactive molecular dynamics study on the first steps of DNA damage by free hydroxyl radicals. , 2011, The journal of physical chemistry. A.

[363]  L. Curtiss,et al.  Nonadditivity of ab initio pair potentials for molecular dynamics of multivalent transition metal ions in water , 1987 .

[364]  Arieh Warshel,et al.  Protein Control of Redox Potentials of Iron‐Sulfur Proteins , 1997 .

[365]  Richard L. Martin,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998 .

[366]  Xiao Zhu,et al.  Polarizable empirical force field for sulfur‐containing compounds based on the classical Drude oscillator model , 2010, J. Comput. Chem..

[367]  Alexander D. MacKerell,et al.  Polarizable empirical force field for aromatic compounds based on the classical drude oscillator. , 2007, The journal of physical chemistry. B.

[368]  Wei Zhang,et al.  Strike a balance: Optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides , 2006, J. Comput. Chem..

[369]  Ananth Grama,et al.  Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques , 2012, SIAM J. Sci. Comput..

[370]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[371]  Robert J. Deeth,et al.  Molecular modelling for transition metal complexes: Dealing with d-electron effects , 2009 .

[372]  T. D. Stack,et al.  Structure and spectroscopy of copper-dioxygen complexes. , 2004, Chemical reviews.

[373]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[374]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[375]  Steven W. Rick,et al.  The effects of charge transfer on the aqueous solvation of ions. , 2012, The Journal of chemical physics.

[376]  Arieh Warshel,et al.  Free energy relationships in metalloenzyme-catalyzed reactions. Calculations of the effects of metal ion substitutions in staphylococcal nuclease , 1990 .

[377]  M. Blomberg,et al.  Transition-metal systems in biochemistry studied by high-accuracy quantum chemical methods. , 2000, Chemical reviews.

[378]  Gerald Henkel,et al.  Metallothioneins: zinc, cadmium, mercury, and copper thiolates and selenolates mimicking protein active site features--structural aspects and biological implications. , 2004, Chemical reviews.

[379]  Edward I. Solomon,et al.  Structural and Functional Aspects of Metal Sites in Biology. , 1996, Chemical reviews.

[380]  P A Kollman,et al.  Electrostatic potentials of deoxydinucleoside monophosphates. 1. Deoxydinucleoside monophosphates and actinomycin chromophore interactions. , 1979, Journal of medicinal chemistry.

[381]  Michael Gaus,et al.  DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). , 2011, Journal of chemical theory and computation.

[382]  Shoshana J. Wodak,et al.  Extended Lagrangian formalism applied to temperature control and electronic polarization effects in molecular dynamics simulations , 1995 .

[383]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[384]  Arieh Warshel,et al.  Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches , 1993 .

[385]  Pedro A Fernandes,et al.  Parameters for Molecular Dynamics Simulations of Manganese-Containing Metalloproteins. , 2013, Journal of chemical theory and computation.

[386]  Michael Bühl,et al.  Geometries of Second-Row Transition-Metal Complexes from Density-Functional Theory. , 2007, Journal of chemical theory and computation.

[387]  Density Matrix Renormalization Group Method for 2D Classical Models , 1995, cond-mat/9508111.

[388]  L. V. Woodcock Isothermal molecular dynamics calculations for liquid salts , 1971 .

[389]  P. K. Swaminathan,et al.  Sodium(1+) and potassium(1+) ion transport through a solvated gramicidin A transmembrane channel: molecular dynamics studies using parallel processors , 1985 .

[390]  Chang-Sheng Wang,et al.  Atom−Bond Electronegativity Equalization Method. 1. Calculation of the Charge Distribution in Large Molecules , 1997 .

[391]  R. Bukoski Dietary Ca2+ and blood pressure: evidence that Ca2+‐sensing receptor activated, sensory nerve dilator activity couples changes in interstitial Ca2+ with vascular tone , 2001 .

[392]  Donald G Truhlar,et al.  Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals? , 2015, Journal of chemical theory and computation.

[393]  F. Gygi,et al.  A first-principles molecular dynamics study of calcium in water. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[394]  Yilin Hu,et al.  Formation and insertion of the nitrogenase iron-molybdenum cofactor. , 2004, Chemical reviews.

[395]  S. Riedel,et al.  Identification of an iridium-containing compound with a formal oxidation state of IX , 2014, Nature.

[396]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[397]  X. Daura,et al.  Parametrization of aliphatic CHn united atoms of GROMOS96 force field , 1998 .

[398]  K. Merz,et al.  Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model. , 2015, Journal of chemical theory and computation.

[399]  Hajime Hirao,et al.  Partial hessian fitting for determining force constant parameters in molecular mechanics , 2016, J. Comput. Chem..

[400]  A. Yethiraj,et al.  Self-diffusion and viscosity in electrolyte solutions. , 2012, The journal of physical chemistry. B.

[401]  W. Han,et al.  Structure, redox, pKa, spin. A golden tetrad for understanding metalloenzyme energetics and reaction pathways , 2006, JBIC Journal of Biological Inorganic Chemistry.

[402]  George A. Kaminski,et al.  Electrostatic polarization is crucial in reproducing Cu(I) interaction energies and hydration. , 2011, The journal of physical chemistry. B.

[403]  Markus Reiher,et al.  New Benchmark Set of Transition-Metal Coordination Reactions for the Assessment of Density Functionals. , 2014, Journal of chemical theory and computation.

[404]  S. Grimme,et al.  Comprehensive Study of the Thermochemistry of First-Row Transition Metal Compounds by Spin Component Scaled MP2 and MP3 Methods , 2004 .

[405]  Michael Gaus,et al.  Parameterization of the DFTB3 method for Br, Ca, Cl, F, I, K, and Na in organic and biological systems. , 2015, Journal of chemical theory and computation.

[406]  N. Gresh,et al.  Role of Cation Polarization in holo- and hemi-Directed [Pb(H2O)n](2+) Complexes and Development of a Pb(2+) Polarizable Force Field. , 2011, Journal of chemical theory and computation.

[407]  Jejoong Yoo,et al.  Improved Parametrization of Li+, Na+, K+, and Mg2+ Ions for All-Atom Molecular Dynamics Simulations of Nucleic Acid Systems , 2012 .

[408]  W. L. Jorgensen,et al.  Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field , 2015, Journal of chemical theory and computation.

[409]  Wilfred F. van Gunsteren,et al.  An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase , 2001, J. Comput. Chem..

[410]  F. Paesani,et al.  Toward Chemical Accuracy in the Description of Ion-Water Interactions through Many-Body Representations. I. Halide-Water Dimer Potential Energy Surfaces. , 2016, Journal of chemical theory and computation.

[411]  K. Hallberg New trends in density matrix renormalization , 2006, cond-mat/0609039.

[412]  Alexander D. MacKerell,et al.  Force Field for Peptides and Proteins based on the Classical Drude Oscillator. , 2013, Journal of chemical theory and computation.

[413]  A. Stuchebrukhov,et al.  Accounting for electronic polarization in non-polarizable force fields. , 2011, Physical chemistry chemical physics : PCCP.

[414]  W. L. Jorgensen,et al.  Monte Carlo simulation of differences in free energies of hydration , 1985 .

[415]  Toon Verstraelen,et al.  The electronegativity equalization method and the split charge equilibration applied to organic systems: parametrization, validation, and comparison. , 2009, The Journal of chemical physics.

[416]  S. I. Gorelsky Complexes with a Single Metal-Metal Bond as a Sensitive Probe of Quality of Exchange-Correlation Functionals. , 2012, Journal of chemical theory and computation.

[417]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[418]  Kathleen A. Durkin,et al.  Alcohols, ethers, carbohydrates, and related compounds. II. The anomeric effect , 2003, J. Comput. Chem..

[419]  Vijay S. Pande,et al.  OpenMM: A Hardware-Independent Framework for Molecular Simulations , 2010, Computing in Science & Engineering.

[420]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[421]  Peter V. Coveney,et al.  Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[422]  Yizhak Marcus,et al.  Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K , 1991 .

[423]  Benoît Roux,et al.  Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. , 2008, Journal of molecular biology.

[424]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[425]  Michele Migliore,et al.  Monte Carlo study of free energy of hydration for Li+, Na+, K+, F−, and Cl− with ab initio potentials , 1988 .

[426]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines , 1973 .

[427]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[428]  A. Rappé,et al.  Application of a Universal Force Field to Organic Molecules , 1992 .

[429]  William L. Jorgensen,et al.  Energy component analysis for dilute aqueous solutions of lithium(1+), sodium(1+), fluoride(1-), and chloride(1-) ions , 1984 .

[430]  E. Clementi,et al.  Study of the Structure of Molecular Complexes. I. Energy Surface of a Water Molecule in the Field of a Lithium Positive Ion , 1972 .

[431]  F. Walker,et al.  Models of the bis-histidine-ligated electron-transferring cytochromes. Comparative geometric and electronic structure of low-spin ferro- and ferrihemes. , 2004, Chemical reviews.

[432]  T Verstraelen,et al.  ACKS2: atom-condensed Kohn-Sham DFT approximated to second order. , 2013, The Journal of chemical physics.

[433]  G. Torrie,et al.  Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid , 1974 .

[434]  Nohad Gresh,et al.  Comparative binding energetics of Mg2+, Ca2+, Zn2+, and Cd2+ to biologically relevant ligands: Combined ab initio SCF supermolecule and molecular mechanics investigation , 1996, J. Comput. Chem..

[435]  J. Mayer,et al.  Interatomic Distances in Crystals of the Alkali Halides , 1933 .

[436]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[437]  Michele Parrinello,et al.  Ab initio molecular-dynamics simulation of K+ solvation in water , 1999 .

[438]  E. Marcos,et al.  Examining the influence of the [Zn(H2O)6]2+ geometry change on the Monte Carlo simulations of Zn2+ in water , 1996 .

[439]  D. N. Clark,et al.  Multiple metal-carbon bonds. 12. Tungsten and molybdenum neopentylidyne and some tungsten neopentylidene complexes , 1978 .

[440]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[441]  Richard L. Martin,et al.  Relativistic contributions to the low‐lying excitation energies and ionization potentials of the transition metals , 1981 .

[442]  Sharon Hammes-Schiffer,et al.  Hydrogen tunneling in enzymes and biomimetic models. , 2014, Chemical reviews.

[443]  K. Morokuma,et al.  Molecular orbital studies of electron donor-acceptor complexes. I. Carbonyl cyanide-ROR and tetracyanoethylene-ROR complexes , 1975 .

[444]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[445]  A. Lledós,et al.  Transition metal polyhydrides: from qualitative ideas to reliable computational studies. , 2000, Chemical reviews.

[446]  A. Wilson,et al.  Importance of the quality of metal and ligand basis sets in transition metal species. , 2008, The Journal of chemical physics.

[447]  H. Sun,et al.  Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters , 1994, J. Comput. Chem..

[448]  A. S. de Araujo,et al.  Development of new Cd2+ and Pb2+ Lennard-Jones parameters for liquid simulations. , 2007, The journal of physical chemistry. B.

[449]  Trygve Helgaker,et al.  A priori calculation of molecular properties to chemical accuracy , 2004 .

[450]  Alexander D. MacKerell,et al.  Development and current status of the CHARMM force field for nucleic acids , 2000, Biopolymers.

[451]  F. London,et al.  Zur Theorie und Systematik der Molekularkräfte , 1930 .

[452]  Karl Jug,et al.  SINDO1. A semiempirical SCF MO method for molecular binding energy and geometry I. Approximations and parametrization , 1980 .

[453]  P A Kollman,et al.  Electrostatic potentials of proteins. 1. Carboxypeptidase A. , 1976, Journal of the American Chemical Society.

[454]  D. R. Hartree,et al.  The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[455]  R. McGibbon,et al.  Discovering chemistry with an ab initio nanoreactor , 2014, Nature chemistry.

[456]  D. Case,et al.  ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins , 2014, Journal of chemical theory and computation.

[457]  Chang-Sheng Wang,et al.  Atom-Bond Electronegativity Equalization Method and its Applications Based on Density Functional Theory , 2003 .

[458]  P A Kollman,et al.  Electrostatic potentials of proteins. 2. Role of electrostatics in a possible catalytic mechanism for carboxypeptidase A. , 1976, Journal of the American Chemical Society.

[459]  Shneior Lifson,et al.  Consistent force field calculations. III. Vibrations, conformations, and heats of hydrogenation of nonconjugated olefins , 1973 .

[460]  L. Banci Molecular dynamics simulations of metalloproteins. , 2003, Current opinion in chemical biology.

[461]  N. Gresh,et al.  Modeling copper(I) complexes: SIBFA molecular mechanics versus ab initio energetics and geometrical arrangements , 2002 .

[462]  T. Doman,et al.  Molecular mechanics force fields for linear metallocenes , 1992 .

[463]  Carmay Lim,et al.  Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions , 2009, J. Comput. Chem..

[464]  J. McCoubrey,et al.  Intermolecular forces between unlike molecules. A more complete form of the combining rules , 1960 .

[465]  Xin Li,et al.  Hydration of Li+ -ion in atom-bond electronegativity equalization method-7P water: a molecular dynamics simulation study. , 2005, The Journal of chemical physics.

[466]  Bill R. Miller,et al.  Wide-open flaps are key to urease activity. , 2012, Journal of the American Chemical Society.

[467]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[468]  J. Bertrán,et al.  The role of many-body interactions in the stability of hydrated Cu2+ clusters , 1990 .

[469]  Christopher D. Williams,et al.  The Development of a Classical Force Field To Determine the Selectivity of an Aqueous Fe(3+)-EDA Complex for TcO4(-) and SO4(2.). , 2014, Journal of chemical theory and computation.

[470]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[471]  Robert L. Kuczkowski,et al.  Molecular structures of gas‐phase polyatomic molecules determined by spectroscopic methods , 1979 .

[472]  Julian Tirado-Rives,et al.  Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules. , 2006, The journal of physical chemistry. A.

[473]  Milton Medeiros,et al.  Gibbs ensemble Monte Carlo simulation of the properties of water with a fluctuating charges model , 1997 .

[474]  J. Hanlon,et al.  Effective Ionic Charge in Alkali Halides , 1959 .

[475]  A. Bondi van der Waals Volumes and Radii , 1964 .

[476]  M. A. Whitehead,et al.  Electronegativity. II. Bond and Orbital Electronegativities , 1963 .

[477]  J. Pople,et al.  Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap , 1967 .

[478]  Transition metal catalysis by density functional theory and density functional theory/molecular mechanics , 2012 .

[479]  Frank Weinhold,et al.  Natural bond orbital methods , 2012 .

[480]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[481]  Jean-Philip Piquemal,et al.  A CSOV study of the difference between HF and DFT intermolecular interaction energy values: The importance of the charge transfer contribution , 2005, J. Comput. Chem..

[482]  A. W. Götz,et al.  The i-TTM model for ab initio-based ion-water interaction potentials. II. Alkali metal ion-water potential energy functions. , 2016, Physical chemistry chemical physics : PCCP.

[483]  K. Merz,et al.  Assessment of the CCSD and CCSD(T) coupled-cluster methods in calculating heats of formation for Cu complexes , 2009, Molecular physics.

[484]  A. Stuchebrukhov,et al.  Electronic continuum model for molecular dynamics simulations. , 2009, The Journal of chemical physics.

[485]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[486]  A. Filipponi,et al.  Hydration properties and ionic radii of actinide(III) ions in aqueous solution. , 2013, Inorganic chemistry.

[487]  Haoyu S. Yu,et al.  Oxidation State 10 Exists. , 2016, Angewandte Chemie.

[488]  Ross C. Walker,et al.  Paramfit: Automated optimization of force field parameters for molecular dynamics simulations , 2015, J. Comput. Chem..

[489]  Alexander D. MacKerell,et al.  Simulation study of ion pairing in concentrated aqueous salt solutions with a polarizable force field. , 2013, Faraday discussions.

[490]  E. Zurek,et al.  Superconducting High-Pressure Phases Composed of Hydrogen and Iodine. , 2015, The journal of physical chemistry letters.

[491]  Kristina Nilsson,et al.  An automatic method to generate force-field parameters for hetero-compounds. , 2003, Acta crystallographica. Section D, Biological crystallography.

[492]  R. M. Badger A Relation Between Internuclear Distances and Bond Force Constants , 1934 .

[493]  M. Natália D. S. Cordeiro,et al.  Ab initio copper–water interaction potential for the simulation of aqueous solutions , 1993, J. Comput. Chem..

[494]  Adam Liwo,et al.  A united residue force‐field for calcium–protein interactions , 2004, Protein science : a publication of the Protein Society.

[495]  George Schoendorff,et al.  Gauging the Performance of Density Functionals for Lanthanide-Containing Molecules. , 2016, Journal of chemical theory and computation.

[496]  Johann Gasteiger,et al.  Electronegativity equalization: application and parametrization , 1985 .

[497]  Ab initio calculation of the free energy of liquid water , 1978 .

[498]  T. Lybrand,et al.  Molecular recognition in nonaqueous solvents: sodium ion, potassium ion, and 18-crown-6 in methanol , 1989 .

[499]  Cong Liu,et al.  C-O bond cleavage of dimethyl ether by transition metal ions: a systematic study on catalytic properties of metals and performance of DFT functionals. , 2013, The journal of physical chemistry. A.

[500]  G. Frenking,et al.  Theoretical Studies of Some Transition-Metal-Mediated Reactions of Industrial and Synthetic Importance. , 2000, Chemical reviews.

[501]  Frank Neese,et al.  Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum mechanics. , 2014, Nature chemistry.

[502]  Donald G Truhlar,et al.  SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters. , 2005, Journal of chemical theory and computation.

[503]  Nathan J DeYonker,et al.  Toward accurate theoretical thermochemistry of first row transition metal complexes. , 2012, The journal of physical chemistry. A.

[504]  H. Gray,et al.  Electron flow through metalloproteins. , 2014, Chemical reviews.

[505]  Renxiao Wang,et al.  Systematic Derivation of AMBER Force Field Parameters Applicable to Zinc-Containing Systems. , 2010, Journal of chemical theory and computation.

[506]  Nathan J. DeYonker,et al.  Computational s-block thermochemistry with the correlation consistent composite approach. , 2007, The journal of physical chemistry. A.

[507]  D. W. Noid Studies in Molecular Dynamics , 1976 .

[508]  Gerard Parkin,et al.  Synthetic analogues relevant to the structure and function of zinc enzymes. , 2004, Chemical reviews.

[509]  Steven J. Stuart,et al.  Effects of Polarizability on the Hydration of the Chloride Ion , 1996 .

[510]  Federico Fogolari,et al.  Protocol for MM/PBSA molecular dynamics simulations of proteins. , 2003, Biophysical journal.

[511]  Haigang Lu,et al.  Atomic orbitals in molecules: general electronegativity and improvement of Mulliken population analysis. , 2006, Physical chemistry chemical physics : PCCP.

[512]  V. Barone,et al.  Hydrogen and higher shell contributions in Zn2+, Ni2+, and Co2+ aqueous solutions: an X-ray absorption fine structure and molecular dynamics study. , 2002, Journal of the American Chemical Society.

[513]  Donald G Truhlar,et al.  Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations. , 2014, Journal of chemical theory and computation.

[514]  Charles J. Reedy,et al.  Heme protein assemblies. , 2004, Chemical reviews.

[515]  R. Spezia,et al.  Hydration of lanthanoids(III) and actinoids(III): an experimental/theoretical saga. , 2012, Chemistry.

[516]  G. Wilkinson,et al.  tert-Butylimido compounds of manganese-(VII), -(VI), -(V) and -(II); nitrido, amido, alkyl, zinc and aluminium compounds , 1995 .

[517]  L. Helm,et al.  Water exchange on magnesium(II) in aqueous solution: a variable temperature and pressure 17O NMR study , 1997 .

[518]  Alexander D. MacKerell,et al.  Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model. , 2007, Journal of chemical theory and computation.

[519]  A. Rappé,et al.  Application of a universal force field to main group compounds , 1992 .

[520]  W. Jensen Electronegativity from Avogadro to Pauling: Part 1: Origins of the Electronegativity Concept , 1996 .

[521]  Steven J. Stuart,et al.  Potentials and Algorithms for Incorporating Polarizability in Computer Simulations , 2003 .

[522]  J. Kovacs Synthetic Analogues of Cysteinate‐Ligated Non‐Heme Iron and Non‐Corrinoid Cobalt Enzymes , 2004 .

[523]  Ulf Ryde,et al.  The coordination chemistry of the structural zinc ion in alcohol dehydrogenase studied by ab initio quantum chemical calculations , 1996, European Biophysics Journal.

[524]  Jean-Philip Piquemal,et al.  Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. , 2010, Journal of Chemical Theory and Computation.

[525]  K. Heinzinger,et al.  A Molecular Dynamics Study of Aqueous Solutions I. First Results for LiCl in H2O , 1974 .

[526]  R. M. Allen,et al.  Iron-Sulfur Proteins with Nonredox Functions , 1997 .

[527]  L. Dang Free energies for association of Cs+ to 18-crown-6 in water. A molecular dynamics study including counter ions , 1994 .

[528]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[529]  Q. Cui,et al.  Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations. , 2016, The journal of physical chemistry. B.

[530]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[531]  Nohad Gresh,et al.  Polarizable water molecules in ligand-macromolecule recognition. Impact on the relative affinities of competing pyrrolopyrimidine inhibitors for FAK kinase. , 2010, Journal of the American Chemical Society.

[532]  V. R. Jensen,et al.  Evaluation of PM3(tm) as a Geometry Generator in Theoretical Studies of Transition-Metal-Based Catalysts for Polymerizing Olefins , 1997 .

[533]  Nathan J. DeYonker,et al.  Multireference Character for 3d Transition-Metal-Containing Molecules. , 2012, Journal of chemical theory and computation.

[534]  Marie-Pierre Gaigeot,et al.  MDVRY: a polarizable classical molecular dynamics package for biomolecules , 2009, Comput. Phys. Commun..

[535]  Yuan-Ping Pang,et al.  Novel Zinc Protein Molecular Dynamics Simulations: Steps Toward Antiangiogenesis for Cancer Treatment , 1999 .

[536]  V. N. Trostin,et al.  Structural parameters of Cu2+ aqua complexes in aqueous solutions of its salts , 2009 .

[537]  Ruibo Wu,et al.  A Transferable Non-bonded Pairwise Force Field to Model Zinc Interactions in Metalloproteins. , 2011, Journal of chemical theory and computation.

[538]  Peter A. Kollman,et al.  Cation-.pi. Interactions: Nonadditive Effects Are Critical in Their Accurate Representation , 1995 .

[539]  Thomas A. Halgren MMFF VI. MMFF94s option for energy minimization studies , 1999, J. Comput. Chem..

[540]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics , 1989 .

[541]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[542]  Anna I. Krylov,et al.  Q‐Chem: an engine for innovation , 2013 .

[543]  Robert J. Deeth,et al.  Analytical derivatives, ?? bonding and d???s mixing in the ligand field molecular mechanics methodElectronic supplementary information (ESI) available: theoretical background. See http://www.rsc.org/suppdata/cp/b2/b203815c/ , 2002 .

[544]  A. Dedieu,et al.  Theoretical studies in palladium and platinum molecular chemistry. , 2000, Chemical reviews.

[545]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: The generalized Huggins-Mayer form☆ , 1964 .

[546]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[547]  Kersti Hermansson,et al.  Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. , 2010, The journal of physical chemistry. A.

[548]  Shina Caroline Lynn Kamerlin,et al.  Force Field Independent Metal Parameters Using a Nonbonded Dummy Model , 2014, The journal of physical chemistry. B.

[549]  T. Yanai,et al.  High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds. , 2009, The Journal of chemical physics.

[550]  M. Dewar,et al.  Ground states of .sigma.-bonded molecules. IX. MINDO [modified intermediate neglect of differential overlap]/2 method , 1970 .

[551]  Kenneth M Merz,et al.  Structural Survey of Zinc Containing Proteins and the Development of the Zinc AMBER Force Field (ZAFF). , 2010, Journal of chemical theory and computation.

[552]  M. I. Bernal-Uruchurtu,et al.  Comment on “Examining the influence of the [Zn(H2O)6]2+ geometry change on the Monte Carlo simulations of Zn2+ in water” [J. Chem. Phys. 105, 5968 (1996)] , 1998 .

[553]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[554]  Garnet Kin-Lic Chan,et al.  The ab-initio density matrix renormalization group in practice. , 2015, The Journal of chemical physics.

[555]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[556]  Shaoyong Lu,et al.  How calcium inhibits the magnesium‐dependent kinase gsk3β: A molecular simulation study , 2013, Proteins.

[557]  R. Mecke Zum Aufbau der Bandenspektra , 1925 .

[558]  Jacopo Tomasi,et al.  Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials , 1978 .

[559]  A. V. van Duin,et al.  Optimization and application of lithium parameters for the reactive force field, ReaxFF. , 2005, The journal of physical chemistry. A.

[560]  Junmei Wang,et al.  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000, J. Comput. Chem..

[561]  G. Lamoureux,et al.  Molecular modelling of cation–π interactions , 2012 .

[562]  E. Clementi,et al.  Simulations of the solvent structure for macromolecules. II. Structure of water solvating Na+‐B‐DNA at 300 K and a model for conformational transitions induced by solvent variations , 1981 .

[563]  David S Sholl,et al.  Improved Atoms-in-Molecule Charge Partitioning Functional for Simultaneously Reproducing the Electrostatic Potential and Chemical States in Periodic and Nonperiodic Materials. , 2012, Journal of chemical theory and computation.

[564]  Walter Thiel,et al.  Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group , 1996 .

[565]  A. Warshel,et al.  Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n‐Alkane Molecules , 1968 .

[566]  Fu Lin,et al.  VFFDT: A New Software for Preparing AMBER Force Field Parameters for Metal-Containing Molecular Systems , 2016, J. Chem. Inf. Model..

[567]  E. Clementi,et al.  A theoretical study of the lithium fluoride molecule in water , 1974 .

[568]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[569]  D. Tieleman,et al.  Perspective on the Martini model. , 2013, Chemical Society reviews.

[570]  E. Clementi,et al.  Study of the structure of molecular complexes. III. Energy surface of a water molecule in the field of a fluorine or chlorine anion , 1973 .

[571]  Alexei A Stuchebrukhov,et al.  Polarizable molecular interactions in condensed phase and their equivalent nonpolarizable models. , 2014, The Journal of chemical physics.

[572]  Nohad Gresh,et al.  Polarizable water networks in ligand-metalloprotein recognition. Impact on the relative complexation energies of Zn-dependent phosphomannose isomerase with D-mannose 6-phosphate surrogates. , 2011, The journal of physical chemistry. B.

[573]  R. B. Ewell I. Heat Capacity of Propane. I. Determination of Intermolecular Forces from the Joule-Thomson Coefficients. , 1938 .

[574]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[575]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[576]  Liping Yu,et al.  Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements , 2014, Nature Communications.

[577]  Richard M. Noyes,et al.  Thermodynamics of Ion Hydration as a Measure of Effective Dielectric Properties of Water , 1962 .

[578]  Helmut Beinert,et al.  ACONITASE AS IRON-SULFUR PROTEIN, ENZYME, AND IRON-REGULATORY PROTEIN , 1996 .

[579]  E. Solomon,et al.  Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.

[580]  Johann Gasteiger,et al.  A new model for calculating atomic charges in molecules , 1978 .

[581]  John C. Slater,et al.  The Van Der Waals Forces in Gases , 1931 .

[582]  David J. Giesen,et al.  Class IV charge models: A new semiempirical approach in quantum chemistry , 1995, J. Comput. Aided Mol. Des..

[583]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[584]  Rebecca K. Carlson,et al.  Can Multiconfigurational Self-Consistent Field Theory and Density Functional Theory Correctly Predict the Ground State of Metal-Metal-Bonded Complexes? , 2015, Journal of chemical theory and computation.

[585]  P. Comba,et al.  The computation of lipophilicities of ⁶⁴Cu PET systems based on a novel approach for fluctuating charges. , 2013, Dalton transactions.

[586]  M. Berkowitz,et al.  Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer. , 2015, The Journal of chemical physics.

[587]  Johan Aaqvist,et al.  Comment on "Transferability of Ion Models" , 1994 .

[588]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[589]  A. V. van Duin,et al.  Development of a ReaxFF description for gold , 2008 .

[590]  Sv Silvia Nedea,et al.  Site Stability on Cobalt Nanoparticles: A Molecular Dynamics ReaxFF Reactive Force Field Study , 2014 .

[591]  Walter Thiel,et al.  Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems. , 2015, Journal of chemical theory and computation.

[592]  Georgios Archontis,et al.  Attraction of iodide ions by the free water surface, revealed by simulations with a polarizable force field based on Drude oscillators. , 2005, The journal of physical chemistry. B.

[593]  Thomas A. Halgren,et al.  Maximally diagonal force constants in dependent angle-bending coordinates. II. Implications for the design of empirical force fields , 1990 .

[594]  Clark R. Landis,et al.  SHAPES empirical force field: new treatment of angular potentials and its application to square-planar transition-metal complexes , 1991 .

[595]  Altura Bm,et al.  Interactions of Mg and K on blood vessels--aspects in view of hypertension. Review of present status and new findings. , 1984 .

[596]  Ruhong Zhou,et al.  Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model , 1999 .

[597]  Arthur E. Martell,et al.  Ligand design for selective complexation of metal ions in aqueous solution , 1989 .

[598]  P. Claverie,et al.  The exact multicenter multipolar part of a molecular charge distribution and its simplified representations , 1988 .

[599]  B. Altura,et al.  Interactions of Mg and K on blood vessels--aspects in view of hypertension. Review of present status and new findings. , 1984, Magnesium.

[600]  Karl Jug,et al.  Consistent modifications of SINDO1: II. Applications to first- and second-row elements , 1999, J. Comput. Chem..

[601]  Pengyu Y. Ren,et al.  Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure. , 2006, The Journal of chemical physics.

[602]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[603]  J. Onuchic,et al.  Theory and Practice of Electron Transfer within Proteinminus signProtein Complexes: Application to the Multidomain Binding of Cytochrome c by Cytochrome c Peroxidase. , 1996, Chemical reviews.

[604]  Peter Comba,et al.  Inorganic and bioinorganic molecular mechanics modeling—the problem of the force field parameterization , 2003 .

[605]  E. Clementi,et al.  Study of the structure of molecular complexes , 1976 .

[606]  Ming-Jing Hwang,et al.  Derivation of Class II Force Fields. 4. van der Waals Parameters of Alkali Metal Cations and Halide Anions , 1997 .

[607]  T. Simanouti The Normal Vibrations of Polyatomic Molecules as Calculated by Urey‐Bradley Field. II. Vibrations of Polythene, Ethane, and Their Deuterium Compounds , 1949 .

[608]  N. L. Allinger,et al.  Alcohols, ethers, carbohydrates, and related compounds. Part V.2 The Bohlmann torsional effect , 2004 .

[609]  C. Cramer,et al.  Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks. , 2015, Chemical reviews.

[610]  John D. Lipscomb,et al.  Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters. , 1996, Chemical reviews.

[611]  M. Alipour Validation of double-hybrid density functionals for electric response properties of transition-metal systems: a new paradigm based on physical considerations. , 2013, The journal of physical chemistry. A.

[612]  Andrew D. Sutton,et al.  Synthesis of a Stable Compound with Fivefold Bonding Between Two Chromium(I) Centers , 2005, Science.

[613]  Nohad Gresh,et al.  Joint quantum chemical and polarizable molecular mechanics investigation of formate complexes with penta- and hexahydrated Zn2+: Comparison between energetics of model bidentate, monodentate, and through-water Zn2+ binding modes and evaluation of nonadditivity effects , 1999, J. Comput. Chem..

[614]  Alice Stanton,et al.  Structure-based design of aliskiren, a novel orally effective renin inhibitor. , 2003, Biochemical and biophysical research communications.

[615]  Angela K. Wilson,et al.  Comparative Study of Single and Double Hybrid Density Functionals for the Prediction of 3d Transition Metal Thermochemistry. , 2012, Journal of chemical theory and computation.

[616]  Richard M. Badger,et al.  The Relation Between the Internuclear Distances and Force Constants of Molecules and Its Application to Polyatomic Molecules , 1935 .

[617]  Per-Ola Norrby,et al.  Deriving force field parameters for coordination complexes , 2001 .

[618]  J. A. Alonso Electronic and atomic structure, and magnetism of transition-metal clusters. , 2000, Chemical reviews.

[619]  A. Voityuk Intermediate neglect of differential overlap for spectroscopy , 2013 .

[620]  W. J. Stevens,et al.  Transferability of molecular distributed polarizabilities from a simple localized orbital based method , 1989 .

[621]  Andreas P. Eichenberger,et al.  Definition and testing of the GROMOS force-field versions 54A7 and 54B7 , 2011, European Biophysics Journal.

[622]  Henry Margenau,et al.  The Role of Quadrupole Forces in Van Der Waals Attractions , 1931 .

[623]  B. C. Garrett,et al.  Photoelectron spectra of the hydrated iodine anion from molecular dynamics simulations , 1993 .

[624]  K. Morokuma,et al.  Molecular orbital studies of hydrogen bonds. VI. Origin of red shift of .pi.-.pi.* transitions. trans-Acrolein-water complex , 1975 .

[625]  M. Parrinello,et al.  Anomalous water diffusion in salt solutions , 2014, Proceedings of the National Academy of Sciences.

[626]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[627]  J. Burda,et al.  Estimation of Transition-Metal Empirical Parameters for Molecular Mechanical Force Fields. , 2016, Journal of chemical theory and computation.

[628]  Alexander D. MacKerell,et al.  Additive and Classical Drude Polarizable Force Fields for Linear and Cyclic Ethers. , 2007, Journal of chemical theory and computation.

[629]  B. Roux,et al.  Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. , 2006, The journal of physical chemistry. B.

[630]  Jenn-Huei Lii,et al.  An improved force field (MM4) for saturated hydrocarbons , 1996, Journal of Computational Chemistry.

[631]  Arnold T. Hagler,et al.  New combining rules for rare gas van der waals parameters , 1993, J. Comput. Chem..

[632]  Michael C. Zerner,et al.  Calculated spectra of hydrated ions of the first transition-metal series , 1986 .

[633]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[634]  Yong Wang,et al.  P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. , 2010, Chemical reviews.

[635]  Zhong-Zhi Yang,et al.  Atomic Charge Calculation of Metallobiomolecules in Terms of the ABEEM Method. , 2007, Journal of chemical theory and computation.

[636]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[637]  J. Almlöf,et al.  Hydrogen bond studies , 1973 .

[638]  J. F. Harrison Electronic structure of diatomic molecules composed of a first-row transition metal and main-group element (h-f). , 2000, Chemical reviews.

[639]  J. H. Zhang,et al.  Development of an effective polarizable bond method for biomolecular simulation. , 2013, The journal of physical chemistry. B.

[640]  A. Kolinski,et al.  Coarse-Grained Protein Models and Their Applications. , 2016, Chemical reviews.

[641]  Feng Wang,et al.  Pairwise-additive force fields for selected aqueous monovalent ions from adaptive force matching. , 2015, The Journal of chemical physics.

[642]  P. Kollman,et al.  THEORETICAL STUDIES OF HYDROGEN-BONDED DIMERS, COMPLEXES INVOLVING HF, H2O, NH3, HCL, H2S, PH3, HCN, HNC, HCP, CH2NH, H2CS, H2CO, CH4, CF3H, C2H2, C2H4, C6H6, F(-), AND H3O(+) , 1975 .

[643]  Robert J. Deeth,et al.  Molecular Mechanics for Coordination Complexes: The Impact of Adding d-Electron Stabilization Energies , 1995 .

[644]  Albert H. Mao,et al.  Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions. , 2012, The Journal of chemical physics.

[645]  M. Dewar,et al.  Ground States of σ‐Bonded Molecules. IV. The MINDO Method and Its Application to Hydrocarbons , 1969 .

[646]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[647]  Gerald Geudtner,et al.  MSINDO parameterization for third-row main group elements , 2000, J. Comput. Chem..

[648]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[649]  Pil Hyon Kim On the Proton Resonance of Several Hexammine Complex Salts , 1960 .

[650]  W. L. Jorgensen,et al.  Quantum and statistical mechanical studies of liquids. 21. The nature of dilute solutions of sodium and methoxide ions in methanol , 1982 .

[651]  F. Gygi,et al.  A first principles molecular dynamics simulation of the hydrated magnesium ion , 2001 .

[652]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[653]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[654]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[655]  Georg Kresse,et al.  Why does the B3LYP hybrid functional fail for metals? , 2007, The Journal of chemical physics.

[656]  Michael Bühl,et al.  Geometries of Transition-Metal Complexes from Density-Functional Theory. , 2006, Journal of chemical theory and computation.

[657]  E. Clementi,et al.  Energetics and hydration structures of a solvated gramicidin A transmembrane channel for potassium and sodium cations , 1985 .

[658]  Pengyu Y. Ren,et al.  Ion solvation thermodynamics from simulation with a polarizable force field. , 2003, Journal of the American Chemical Society.

[659]  John Z H Zhang,et al.  A New Quantum Calibrated Force Field for Zinc-Protein Complex. , 2013, Journal of chemical theory and computation.

[660]  J. Tomasi,et al.  Ab initio effective pair potentials for simulations of the liquid state, based on the polarizable continuum model of the solvent , 1992 .

[661]  Pengfei Li,et al.  Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water , 2014, The journal of physical chemistry. B.

[662]  R. Parr,et al.  Electronegativity: The density functional viewpoint , 1978 .

[663]  M. Tuckerman,et al.  Understanding Modern Molecular Dynamics: Techniques and Applications , 2000 .

[664]  C. Bauschlicher,et al.  The atomic states of nickel , 1988 .

[665]  Zhong-Zhi Yang,et al.  Valence state parameters of all transition metal atoms in metalloproteins—development of ABEEMσπ fluctuating charge force field , 2014, J. Comput. Chem..

[666]  J. Mayer,et al.  Dispersion and Polarizability and the van der Waals Potential in the Alkali Halides , 1933 .

[667]  R. H. Holm,et al.  Developments in the biomimetic chemistry of cubane-type and higher nuclearity iron-sulfur clusters. , 2014, Chemical reviews.

[668]  T. Straatsma,et al.  Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations , 1988 .

[669]  P. Blöchl,et al.  Electrostatic decoupling of periodic images of plane‐wave‐expanded densities and derived atomic point charges , 1995 .

[670]  E. Di Cera,et al.  Role of Na+ and K+ in enzyme function. , 2006, Physiological reviews.

[671]  Jaehoon Jung,et al.  Molecular dynamics study of the ionic conductivity of 1-n-butyl-3-methylimidazolium salts as ionic liquids , 2005 .

[672]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[673]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[674]  H. H. Jaffé,et al.  Electronegativity. I. Orbital Electronegativity of Neutral Atoms , 1962 .

[675]  David N. J. White,et al.  A computationally efficient alternative to the Buckingham potential for molecular mechanics calculations , 1997, J. Comput. Aided Mol. Des..

[676]  M. Castier,et al.  Molecular Simulation Studies of the Diffusion of Methane, Ethane, Propane, and Propylene in ZIF-8 , 2015 .

[677]  T. J. Kappock,et al.  Pterin-Dependent Amino Acid Hydroxylases. , 1996, Chemical reviews.

[678]  Alexei A Stuchebrukhov,et al.  Polarizable Mean-Field Model of Water for Biological Simulations with Amber and Charmm force fields. , 2012, Journal of chemical theory and computation.

[679]  Steven J. Stuart,et al.  Surface Curvature Effects in the Aqueous Ionic Solvation of the Chloride Ion , 1999 .

[680]  Donald G Truhlar,et al.  Comparative assessment of density functional methods for 3d transition-metal chemistry. , 2006, The Journal of chemical physics.

[681]  Richard H. Holm,et al.  Synthetic analogues of the active sites of iron-sulfur proteins. , 2004 .

[682]  M. Zerner,et al.  On the low-lying states and electronic spectroscopy of iron(II) porphine. , 1986, Journal of the American Chemical Society.

[683]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[684]  Alexander D. MacKerell,et al.  Improved treatment of the protein backbone in empirical force fields. , 2004, Journal of the American Chemical Society.

[685]  J A McCammon,et al.  Theoretical calculation of relative binding affinity in host-guest systems. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[686]  A. Sutton,et al.  Long-range Finnis–Sinclair potentials , 1990 .

[687]  Sason Shaik,et al.  Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. , 2005, Chemical reviews.

[688]  Pavel Hobza,et al.  Describing Noncovalent Interactions beyond the Common Approximations: How Accurate Is the "Gold Standard," CCSD(T) at the Complete Basis Set Limit? , 2013, Journal of chemical theory and computation.

[689]  Eva Zurek,et al.  Theoretical predictions of novel superconducting phases of BaGe3 stable at atmospheric and high pressures. , 2015, Inorganic chemistry.

[690]  D. Case,et al.  Dynamic Simulations of Oxygen Binding to Myoglobin , 1986, Annals of the New York Academy of Sciences.

[691]  Vidar R. Jensen,et al.  Integration of Ligand Field Molecular Mechanics in Tinker , 2015, J. Chem. Inf. Model..

[692]  Thomas A. Halgren,et al.  Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules , 1996, J. Comput. Chem..

[693]  Robert J. Deeth,et al.  The ligand field molecular mechanics model and the stereoelectronic effects of d and s electrons , 2001 .

[694]  Xianzhi Fu,et al.  Cleavage enhancement of specific chemical bonds in DNA by cisplatin radiosensitization. , 2013, The journal of physical chemistry. B.

[695]  Benoît Roux,et al.  A polarizable force field of dipalmitoylphosphatidylcholine based on the classical Drude model for molecular dynamics simulations of lipids. , 2013, The journal of physical chemistry. B.

[696]  L. De Gioia,et al.  Speciation of copper-peptide complexes in water solution using DFTB and DFT approaches: case of the [Cu(HGGG)(Py)] complex. , 2012, The journal of physical chemistry. B.

[697]  A. Rappé,et al.  Application of a universal force field to metal complexes , 1993 .

[698]  M. Reiher,et al.  Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters. , 2008, The Journal of chemical physics.

[699]  T. Simanouti The Normal Vibrations of Polyatomic Molecules as Calculated by Urey‐Bradley Field. III. A Table of Force Constants , 1949 .

[700]  Timothy Clark,et al.  AM1* parameters for copper and zinc , 2007, Journal of molecular modeling.

[701]  C. Jørgensen,et al.  The angular overlap model, an attempt to revive the ligand field approaches , 1965 .

[702]  R. Hille The Mononuclear Molybdenum Enzymes. , 1997, Chemical reviews.

[703]  John Burgess,et al.  Metal Ions in Solution , 1978 .

[704]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[705]  J. Mccleverty Chemistry of nitric oxide relevant to biology. , 2004, Chemical reviews.

[706]  L. Delle Site,et al.  Ionic liquids studied across different scales: a computational perspective. , 2012, Faraday discussions.

[707]  Wilfred F van Gunsteren,et al.  On developing coarse-grained models for biomolecular simulation: a review. , 2012, Physical chemistry chemical physics : PCCP.

[708]  Erik L. G. Wernersson,et al.  Solvation and ion-pairing properties of the aqueous sulfate anion: explicit versus effective electronic polarization. , 2012, Physical chemistry chemical physics : PCCP.

[709]  Michael Seitz,et al.  Computational Estimation of Lanthanoid-Water Bond Lengths by Semiempirical Methods , 2010, J. Chem. Inf. Model..

[710]  D. Osguthorpe,et al.  Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system , 1988, Proteins.

[711]  C. Lecomte,et al.  Modelling electrostatic potential from experimentally determined charge densities. I. Spherical-atom approximation , 1993 .

[712]  Peter A. Kollman,et al.  Theoretical studies of hydrogen-bonded dimers. Complexes involving HF, H2O, NH3, CH1, H2S, PH3, HCN, HNC, HCP, CH2NH, H2CS, H2CO, CH4, CF3,H, C2H2, C2H4, C6H6, F- and H3O+ , 1975 .

[713]  Jay W Ponder,et al.  An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field. , 2014, Journal of chemical theory and computation.

[714]  K. Wilson The renormalization group and critical phenomena , 1983 .

[715]  Richard A. Vaia,et al.  Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12−6 and 9−6 Lennard-Jones Potentials , 2008 .

[716]  C. Cramer,et al.  Ab Initio Extension of the AMOEBA Polarizable Force Field to Fe(2.). , 2013, Journal of chemical theory and computation.

[717]  C David Sherrill,et al.  Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-ligand Complexes. , 2011, Journal of chemical theory and computation.

[718]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap theory for transition metal complexes: Fe, Co and Cu chlorides , 1979 .

[719]  David A. Case,et al.  Dynamics of ligand escape from the heme pocket of myoglobin , 1988 .

[720]  G. Voth,et al.  Elucidation of the proton transport mechanism in human carbonic anhydrase II. , 2009, Journal of the American Chemical Society.

[721]  Nohad Gresh,et al.  Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. , 2007, Journal of chemical theory and computation.

[722]  E. Clementi,et al.  Structure of aggregates of water and Li+, Na+, or K+ counterions with nucleic acid in solution , 1983 .

[723]  A. Rappé,et al.  Toward an Understanding of Zeolite Y as a Cracking Catalyst with the Use of Periodic Charge Equilibration , 1996 .

[724]  M. Dewar,et al.  MNDO calculations for compounds containing zinc , 1984 .

[725]  T. Tan,et al.  Rational Design of Methodology-Independent Metal Parameters Using a Nonbonded Dummy Model. , 2016, Journal of chemical theory and computation.

[726]  J. Reinhold,et al.  Application of the NDDO method to transition metal compounds , 1984 .

[727]  Ulf Ryde,et al.  Comparison of methods for deriving atomic charges from the electrostatic potential and moments , 1998, J. Comput. Chem..

[728]  L. Dang,et al.  Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study , 1995 .

[729]  V. Sapunov,et al.  A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy–entropy compensation and Born radii) , 2000 .

[730]  Emppu Salonen,et al.  Polarizable force fields. , 2013, Methods in molecular biology.

[731]  Chris Oostenbrink,et al.  An improved nucleic acid parameter set for the GROMOS force field , 2005, J. Comput. Chem..

[732]  T. Poulos Heme enzyme structure and function. , 2014, Chemical reviews.

[733]  Timothy Clark,et al.  AM1* parameters for vanadium and chromium , 2009, Journal of molecular modeling.

[734]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[735]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[736]  S. Lifson,et al.  Potential functions and conformations in cycloalkanes , 1967 .

[737]  T. Shimanouchi,et al.  Infrared absorption spectra of aquo complexes and the nature of co-ordination bonds , 1964 .

[738]  C. Dellago,et al.  Car-Parrinello molecular dynamics simulation of the calcium ion in liquid water , 2003 .

[739]  Jenn-Huei Lii,et al.  Alcohols, ethers, carbohydrates, and related compounds. I. The MM4 force field for simple compounds , 2003, J. Comput. Chem..

[740]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[741]  M. Migliore,et al.  Hydration free energy for Li+ at infinite dilution with a three‐body ab initio potential , 1989 .

[742]  Anders S. Christensen,et al.  DFTB3 Parametrization for Copper: The Importance of Orbital Angular Momentum Dependence of Hubbard Parameters , 2015, Journal of chemical theory and computation.

[743]  S. Ferguson-Miller,et al.  Heme/Copper Terminal Oxidases. , 1996, Chemical reviews.

[744]  B. Roos,et al.  Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond , 2005, Nature.

[745]  Nathan J DeYonker,et al.  The correlation-consistent composite approach: application to the G3/99 test set. , 2006, The Journal of chemical physics.

[746]  George A. Kaminski,et al.  Accurate prediction of absolute acidity constants in water with a polarizable force field: substituted phenols, methanol, and imidazole. , 2005, The journal of physical chemistry. B.

[747]  A. Nguyen,et al.  Development of ions-TIP4P-Ew force fields for molecular processes in bulk and at the aqueous interface using molecular simulations , 2012 .

[748]  E. Davidson Computational transition metal chemistry. , 2000, Chemical reviews.

[749]  Sason Shaik,et al.  Classical valence bond approach by modern methods. , 2011, Chemical reviews.

[750]  Thomas A. Halgren,et al.  MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular‐interaction energies and geometries , 1999, J. Comput. Chem..

[751]  A. Tsipis DFT flavor of coordination chemistry , 2014 .

[752]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[753]  Pengfei Li,et al.  Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. , 2013, Journal of chemical theory and computation.

[754]  William L Jorgensen,et al.  Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions. , 2006, Journal of chemical theory and computation.

[755]  L. V. Woodcock,et al.  Thermodynamic and structural properties of liquid ionic salts obtained by Monte Carlo computation. Part 1.—Potassium chloride , 1971 .

[756]  N. Rösch,et al.  An intermediate neglect of differential overlap technique for actinide compounds , 1994 .

[757]  Stefano Corni,et al.  Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces , 2008, J. Comput. Chem..

[758]  Pengyu Y. Ren,et al.  Polarizable Force Fields for Biomolecular Modeling , 2015 .

[759]  P. Kollman,et al.  A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. , 1999, Journal of biomolecular structure & dynamics.

[760]  James J. P. Stewart,et al.  MOPAC: A semiempirical molecular orbital program , 1990, J. Comput. Aided Mol. Des..

[761]  Boris M. Smirnov,et al.  Reference Data on Atoms, Molecules, and Ions , 1985 .

[762]  R. Deeth Molecular Mechanics for Transition Metal Centers: From Coordination Complexes To Metalloproteins , 2010 .

[763]  William L. Jorgensen,et al.  OPLS ALL-ATOM MODEL FOR AMINES : RESOLUTION OF THE AMINE HYDRATION PROBLEM , 1999 .

[764]  A. T. Hagler,et al.  Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 3. The C:O.cntdot..cntdot..cntdot.H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids , 1979 .

[765]  Nohad Gresh,et al.  Parallel ab initio and molecular mechanics investigation of polycoordinated Zn(II) complexes with model hard and soft ligands: Variations of binding energy and of its components with number and charges of ligands , 2000, J. Comput. Chem..

[766]  G H Loew,et al.  Role of the heme active site and protein environment in structure, spectra, and function of the cytochrome p450s. , 2000, Chemical reviews.

[767]  Alexander D. MacKerell,et al.  Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[768]  T. Cheatham,et al.  Spontaneous Formation of KCl Aggregates in Biomolecular Simulations: A Force Field Issue? , 2007, Journal of chemical theory and computation.

[769]  E. Marcos,et al.  Response to “Comment on ‘Examining the influence of the [Zn(H2O)6]2+ geometry change on the Monte Carlo simulations of Zn2+ in water’ ” [J. Chem. Phys. 108, 1750 (1998)] , 1998 .

[770]  T. Cundari Computational studies of transition metal-main group multiple bonding. , 2000, Chemical reviews.

[771]  William H. Fink,et al.  Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer , 1987 .

[772]  H. Urey,et al.  The Vibrations of Pentatonic Tetrahedral Molecules , 1931 .

[773]  J. A. Barker Statistical mechanics of interacting dipoles , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[774]  W. Goddard,et al.  Generalized valence bond description of bonding in low-lying states of molecules , 1973 .

[775]  Saeed Izadi,et al.  Building Water Models: A Different Approach , 2014, The journal of physical chemistry letters.

[776]  Masahiro Ehara,et al.  A Valence Bond Model for Aqueous Cu ( II ) and Zn ( II ) Ions in the AMOEBA Polarizable Force Field , 2013 .

[777]  M. D. Fryzuk,et al.  Dinitrogen coordination chemistry: on the biomimetic borderlands. , 2004, Chemical reviews.

[778]  Y. Sanejouand,et al.  Simple Two-Body Cation−Water Interaction Potentials Derived from ab Initio Calculations. Comparison to Results Obtained with an Empirical Approach , 1997 .

[779]  Wei Yang,et al.  Modeling Structural Coordination and Ligand Binding in Zinc Proteins with a Polarizable Potential. , 2012, Journal of chemical theory and computation.

[780]  E. Marcos,et al.  Recovering the concept of the hydrated ion for modeling ionic solutions: a Monte Carlo study of zinc(2+) in water , 1993 .

[781]  C. Alemán,et al.  Determination of new Cu+, Cu2+, and Zn2+ Lennard-Jones ion parameters in acetonitrile. , 2013, The journal of physical chemistry. B.

[782]  David van der Spoel,et al.  Molecular Dynamics Simulations of Water with Novel Shell-Model Potentials , 2001 .

[783]  Jorge M. Seminario,et al.  Harmonic Force Field for Glycine Oligopeptides , 2008 .

[784]  D. Truhlar,et al.  How Evenly Can Approximate Density Functionals Treat the Different Multiplicities and Ionization States of 4d Transition Metal Atoms? , 2012, Journal of chemical theory and computation.

[785]  Adri C. T. van Duin,et al.  Atomistic-scale simulations of chemical reactions: Bridging from quantum chemistry to engineering , 2011 .

[786]  E. Solomon,et al.  Introduction: bioinorganic enzymology II. , 2014, Chemical reviews.

[787]  A. Stuchebrukhov,et al.  Electronic Polarizability and the Effective Pair Potentials of Water. , 2010, Journal of chemical theory and computation.

[788]  W. Goddard,et al.  Valence-bond concepts in transition metals: metal hydride diatomic cations , 1990 .

[789]  N. Gresh,et al.  Interactions within the alcohol dehydrogenase Zn(II)-metalloenzyme active site: Interplay between subvalence, electron correlation/dispersion, and charge transfer/induction effects , 2011 .

[790]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[791]  Katharina Wendler,et al.  Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[792]  Karl-Heinz Ott,et al.  Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations , 1996, J. Comput. Chem..

[793]  D. Hartree The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. Term Values and Intensities in Series in Optical Spectra , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[794]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[795]  G. Pálinkás,et al.  Solvation of calcium ion in polar solvents: An X-ray diffraction and ab initio study , 2004 .

[796]  P. Geerlings,et al.  A non-empirical electronegativity equalization scheme. Theory and applications using isolated atom properties , 1995 .

[797]  Notker Rösch,et al.  AM1/d Parameters for Molybdenum , 2000 .

[798]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[799]  Roberto D. Lins,et al.  A new GROMOS force field for hexopyranose‐based carbohydrates , 2005, J. Comput. Chem..

[800]  Ian David Brown Recent Developments in the Methods and Applications of the Bond Valence Model , 2010 .

[801]  E. Kaxiras,et al.  eReaxFF: A Pseudoclassical Treatment of Explicit Electrons within Reactive Force Field Simulations. , 2016, Journal of chemical theory and computation.

[802]  D. N. Nanda,et al.  SINDO1 III. Application to ground states of molecules containing fluorine, boron, beryllium and lithium atoms , 1980 .

[803]  Bernd Hartke,et al.  Global optimization of parameters in the reactive force field ReaxFF for SiOH , 2013, J. Comput. Chem..

[804]  M. Boero,et al.  Hydration properties of magnesium and calcium ions from constrained first principles molecular dynamics. , 2007, The Journal of chemical physics.

[805]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[806]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene , 1980 .

[807]  T. Lu,et al.  ATOMIC DIPOLE MOMENT CORRECTED HIRSHFELD POPULATION METHOD , 2012 .

[808]  M. Zimmer,et al.  Are classical molecular mechanics calculations still useful in bioinorganic simulations , 2009 .

[809]  J. Poblet,et al.  Structure, reactivity, and growth pathways of metallocarbohedrenes m(8)c(12) and transition metal/carbon clusters and nanocrystals: a challenge to computational chemistry. , 2000, Chemical reviews.

[810]  Frank Neese,et al.  The ORCA program system , 2012 .

[811]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[812]  Nathan J. DeYonker,et al.  Accurate enthalpies of formation of alkali and alkaline earth metal oxides and hydroxides: assessment of the correlation consistent composite approach (ccCA). , 2006, The journal of physical chemistry. A.

[813]  S. Niu,et al.  Theoretical studies on reactions of transition-metal complexes. , 2000, Chemical reviews.

[814]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[815]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[816]  H. A. Lorentz Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase , 1881 .

[817]  Jeremy M Berg,et al.  The design of functional DNA-binding proteins based on zinc finger domains. , 2004, Chemical reviews.

[818]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[819]  E. Furet,et al.  Second Coordination Shell Water Exchange Rate and Mechanism: Experiments and Modeling on Hexaaquachromium(III) , 1996 .

[820]  Xin Li,et al.  Molecular-dynamics simulations of alkaline-earth metal cations in water by atom-bond electronegativity equalization method fused into molecular mechanics. , 2005, The Journal of chemical physics.

[821]  Arieh Warshel,et al.  Polarizable Force Fields:  History, Test Cases, and Prospects. , 2007, Journal of chemical theory and computation.

[822]  Thomas A. Halgren,et al.  Merck molecular force field. IV. conformational energies and geometries for MMFF94 , 1996 .

[823]  Robert S. Mulliken,et al.  A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities , 1934 .

[824]  Armando Rossello,et al.  Amber force field implementation, molecular modelling study, synthesis and MMP-1/MMP-2 inhibition profile of (R)- and (S)-N-hydroxy-2-(N-isopropoxybiphenyl-4-ylsulfonamido)-3-methylbutanamides. , 2006, Bioorganic & medicinal chemistry.

[825]  Jesse G. McDaniel,et al.  Physically motivated, robust, ab initio force fields for CO2 and N2. , 2011, The journal of physical chemistry. B.

[826]  William L Jorgensen,et al.  Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents. , 2011, Journal of medicinal chemistry.

[827]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[828]  Per-Ola Norrby,et al.  Automated molecular mechanics parameterization with simultaneous utilization of experimental and quantum mechanical data , 1998, J. Comput. Chem..

[829]  Yang Jiang,et al.  Refined Dummy Atom Model of Mg2+ by Simple Parameter Screening Strategy with Revised Experimental Solvation Free Energy , 2015, J. Chem. Inf. Model..

[830]  Structural properties of metal‐organic frameworks within the density‐functional based tight‐binding method , 2011, 1109.5312.

[831]  Kenneth M. Merz,et al.  The Energy Computation Paradox and ab initio Protein Folding , 2011, PloS one.

[832]  B. Roux,et al.  Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions , 2010 .

[833]  T. Halgren Maximally diagonal force constants in dependent angle-bending coordinates: Part I. Mathematical formulation , 1988 .

[834]  P. Sikora Combining rules for spherically symmetric intermolecular potentials , 1970 .

[835]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[836]  H. Schlegel Perspective on “Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. I. Theory” , 2000 .

[837]  G. Chillemi,et al.  On the solvation of the Zn2+ ion in methanol: a combined quantum mechanics, molecular dynamics, and EXAFS approach. , 2011, Inorganic chemistry.

[838]  R. J. Boyd,et al.  Polarizable point‐charge model for water: Results under normal and extreme conditions , 1996 .

[839]  William L. Jorgensen,et al.  OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform , 1991 .

[840]  R. H. Holm,et al.  Synthetic analogues and reaction systems relevant to the molybdenum and tungsten oxotransferases. , 2004, Chemical reviews.

[841]  J. de Ruyck,et al.  Analysis of the interactions taking place in the recognition site of a bimetallic Mg(II)-Zn(II) enzyme, isopentenyl diphosphate isomerase. a parallel quantum-chemical and polarizable molecular mechanics study. , 2010, The journal of physical chemistry. B.

[842]  J. Gasteiger,et al.  ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY – A RAPID ACCESS TO ATOMIC CHARGES , 1980 .

[843]  Qiang Cui,et al.  A simple but effective modeling strategy for structural properties of non‐heme Fe(II) sites in proteins: Test of force field models and application to proteins in the AlkB family , 2013, J. Comput. Chem..

[844]  Karl Jug,et al.  Consistent modifications of SINDO1: I. Approximations and parameters , 1999, J. Comput. Chem..

[845]  Steven W. Rick,et al.  The effects of charge transfer on the properties of liquid water. , 2011, The Journal of chemical physics.

[846]  J. Mithoefer,et al.  Inhibition of Carbonic Anhydrase , 1958, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[847]  R. Eady Structure−Function Relationships of Alternative Nitrogenases , 1996 .

[848]  L. Dang Computational Study of Ion Binding to the Liquid Interface of Water , 2002 .

[849]  J. B. Forsyth,et al.  The charge-density distribution, its multipole refinement and the antiferromagnetic structure of dioptase, Cu6[Si6O18]·6H2O , 2002 .

[850]  Harry A. Stern,et al.  Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests , 2002, J. Comput. Chem..

[851]  E. Clementi,et al.  B-DNA structural determination of Na+ counterions at different humidities, ionic concentrations, and temperatures , 1982 .

[852]  Pengyu Ren,et al.  Automation of AMOEBA polarizable force field parameterization for small molecules , 2012, Theoretical Chemistry Accounts.

[853]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born , 2012, Journal of chemical theory and computation.

[854]  Dan N. Bernardo,et al.  An Anisotropic Polarizable Water Model: Incorporation of All-Atom Polarizabilities into Molecular Mechanics Force Fields , 1994 .

[855]  C. Vega,et al.  A general purpose model for the condensed phases of water: TIP4P/2005. , 2005, The Journal of chemical physics.

[856]  Robert Vácha,et al.  Ions at Hydrophobic Aqueous Interfaces: Molecular Dynamics with Effective Polarization , 2012 .

[857]  Takeshi Kawase,et al.  Data mining with molecular design rules identifies new class of dyes for dye-sensitised solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[858]  Edson P Bellido,et al.  Harmonic force field for nitro compounds , 2011, Journal of Molecular Modeling.

[859]  Y. Pang Successful molecular dynamics simulation of two zinc complexes bridged by a hydroxide in phosphotriesterase using the cationic dummy atom method , 2001, Proteins.

[860]  E. Clementi,et al.  Interaction of K+ ion with the solvated gramicidin A transmembrane channel. , 1985, Biophysical journal.

[861]  T. Darden,et al.  Towards a force field based on density fitting. , 2006, The Journal of chemical physics.

[862]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[863]  Fanbing Li,et al.  Molecular mechanics. The MM3 force field for alkenes , 1990 .

[864]  Charles L. Brooks,et al.  Fluctuating charge force fields: recent developments and applications from small molecules to macromolecular biological systems , 2006 .

[865]  C. Sunderland,et al.  Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. , 2004, Chemical reviews.

[866]  J. S. Binkley,et al.  Derivative studies in hartree-fock and møller-plesset theories , 2009 .

[867]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[868]  P. Merkling,et al.  The hydration of Cu2+: Can the Jahn-Teller effect be detected in liquid solution? , 2006, The Journal of chemical physics.

[869]  Adri C. T. van Duin,et al.  A reactive force field (ReaxFF) for zinc oxide , 2008 .

[870]  R. Bader,et al.  Virial Field Relationship for Molecular Charge Distributions and the Spatial Partitioning of Molecular Properties , 1972 .

[871]  Frank Neese,et al.  A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry , 2006, JBIC Journal of Biological Inorganic Chemistry.

[872]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[873]  Lars Olsen,et al.  General Transition-State Force Field for Cytochrome P450 Hydroxylation. , 2007, Journal of chemical theory and computation.

[874]  Rita Prosmiti,et al.  i-TTM Model for Ab Initio-Based Ion-Water Interaction Potentials. 1. Halide-Water Potential Energy Functions. , 2016, The journal of physical chemistry. B.

[875]  R. Hancock,et al.  Molecular Mechanics Calculations as a Tool in Coordination Chemistry , 1991 .

[876]  P. Kollman,et al.  Free Energy of Association of the K+:18-Crown-6 Complex in Water: A New Molecular Dynamics Study , 1995 .

[877]  Manoj Kumar,et al.  Nickel-Containing Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase(,). , 1996, Chemical reviews.

[878]  Theoretical studies of molecular conformation. II: Application of the SIBFA procedure to molecules containing carbonyl and carboxylate oxygens and amide nitrogens , 1985 .

[879]  Zhong-Zhi Yang,et al.  Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters. , 2004, The Journal of chemical physics.

[880]  Lennart Nilsson,et al.  Magnesium Ion-Water Coordination and Exchange in Biomolecular Simulations. , 2012, Journal of chemical theory and computation.

[881]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[882]  Pengfei Li,et al.  Taking into Account the Ion-induced Dipole Interaction in the Nonbonded Model of Ions. , 2014, Journal of chemical theory and computation.

[883]  Thomas A. Halgren,et al.  Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular. interactions , 1996, J. Comput. Chem..

[884]  Li Tian,et al.  Copper active sites in biology. , 2014, Chemical reviews.

[885]  Pengfei Li,et al.  MCPB.py: A Python Based Metal Center Parameter Builder , 2016, J. Chem. Inf. Model..

[886]  R. Buckingham,et al.  The Classical Equation of State of Gaseous Helium, Neon and Argon , 1938 .

[887]  P A Kollman,et al.  Calculation and prediction of binding free energies for the matrix metalloproteinases. , 2000, Journal of medicinal chemistry.

[888]  C. Lecomte,et al.  Modelling Electrostatic Potential from Experimentally Determined Charge Densities. II. Total Potential , 1997 .

[889]  C. Landis,et al.  Valence bond concepts applied to the molecular mechanics description of molecular shapes. 4. Transition metals with pi-bonds. , 2001, Journal of the American Chemical Society.

[890]  Richard A Friesner,et al.  Modeling Polarization in Proteins and Protein-ligand Complexes: Methods and Preliminary Results. , 2005, Advances in protein chemistry.

[891]  E. Galbis,et al.  Collecting high-order interactions in an effective pairwise intermolecular potential using the hydrated ion concept: the hydration of Cf³⁺. , 2014, The Journal of chemical physics.

[892]  A. V. van Duin,et al.  Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field. , 2006, The journal of physical chemistry. B.

[893]  Akansha Saxena,et al.  Multisite Ion Models That Improve Coordination and Free Energy Calculations in Molecular Dynamics Simulations. , 2013, Journal of chemical theory and computation.

[894]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[895]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[896]  K. Merz,et al.  Assessment of the "6-31+G** + LANL2DZ" mixed basis set coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. , 2009, The journal of physical chemistry. A.

[897]  Thomas E. Cheatham,et al.  Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters , 2009, The journal of physical chemistry. B.

[898]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[899]  J. Hirose,et al.  [Carbonic anhydrase]. , 1983, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[900]  P. Kollman,et al.  Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .

[901]  P. Pieniazek,et al.  Robust three-body water simulation model. , 2011, The Journal of chemical physics.

[902]  S. Alvarez,et al.  Oxidation states, atomic charges and orbital populations in transition metal complexes , 2009 .

[903]  Konstantin S. Smirnov,et al.  Consistent implementation of the electronegativity equalization method in molecular mechanics and molecular dynamics , 1996 .

[904]  Markus Meuwly,et al.  Molecular Mechanics Force Field for Octahedral Organometallic Compounds with Inclusion of the Trans Influence. , 2009, Journal of chemical theory and computation.

[905]  A. Barker Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .

[906]  Toon Verstraelen,et al.  Automated Parametrization of AMBER Force Field Terms from Vibrational Analysis with a Focus on Functionalizing Dinuclear Zinc(II) Scaffolds. , 2012, Journal of chemical theory and computation.

[907]  Zhong-Zhi Yang,et al.  An investigation of alkane conformations based on the ABEEM/MM model , 2005 .

[908]  Simeng Yan,et al.  Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet , 2010, Science.

[909]  Charlie Tsai,et al.  Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends , 2015 .

[910]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[911]  Michael W. Mahoney,et al.  A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions , 2000 .

[912]  Peter Comba,et al.  Molecular modeling of inorganic compounds , 1995 .

[913]  R. J. Hill Crystal structure refinement and electron density distribution in diaspore , 1979 .

[914]  J. M. Lluch,et al.  Theoretical study of several Fe(H2o)n2+ clusters at different temperatures , 1986 .

[915]  Vincenzo Barone,et al.  Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field. , 2013, Physical chemistry chemical physics : PCCP.

[916]  M. Head‐Gordon,et al.  Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group , 2002 .

[917]  Michael L Drummond,et al.  Performance of density functional theory for 3d transition metal-containing complexes: utilization of the correlation consistent basis sets. , 2009, The journal of physical chemistry. A.

[918]  Vijay S Pande,et al.  Building Force Fields: An Automatic, Systematic, and Reproducible Approach. , 2014, The journal of physical chemistry letters.

[919]  E. Chang,et al.  Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. , 2014, Advances in nutrition.

[920]  D. Schwarzenbach,et al.  The use of electric field gradient calculations in charge density refinements. II. Charge density refinement of the low‐quartz structure of aluminum phosphate , 1979 .

[921]  K. Karlin,et al.  Synthetic models for heme-copper oxidases. , 2004, Chemical reviews.

[922]  W. Goddard,et al.  General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide. , 2014, Journal of chemical theory and computation.

[923]  Alexander D. MacKerell,et al.  All‐atom polarizable force field for DNA based on the classical drude oscillator model , 2014, J. Comput. Chem..

[924]  R. Deeth Recent Developments in Computational Bioinorganic Chemistry , 2004 .

[925]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[926]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[927]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[928]  Arieh Warshel,et al.  Consistent force field for calculation of vibrational spectra and conformations of some amides and lactam rings , 1970 .

[929]  James Andrew McCammon,et al.  Ligand-receptor interactions , 1984, Comput. Chem..

[930]  Nohad Gresh,et al.  Cation–ligand interactions: Reproduction of extended basis set Ab initio SCF computations by the SIBFA 2 additive procedure , 1985 .

[931]  Ian R. McDonald,et al.  Introduction of the shell model of ionic polarizability into molecular dynamics calculations , 1974 .

[932]  Nohad Gresh,et al.  Intermolecular interactions: Reproduction of the results of ab initio supermolecule computations by an additive procedure , 2009 .

[933]  A. Ceulemans,et al.  Theoretical models of exchange interactions in dimeric transition-metal complexes. , 2000, Chemical reviews.

[934]  Angela K. Wilson,et al.  Performance of Density Functional Theory for Second Row (4d) Transition Metal Thermochemistry. , 2013, Journal of chemical theory and computation.

[935]  J. Tomasi,et al.  Free energies and structures of hydrated cations, based on effective pair potentials , 1995 .

[936]  Darrin M. York,et al.  Comparison of structural, thermodynamic, kinetic and mass transport properties of Mg2+ ion models commonly used in biomolecular simulations , 2015, J. Comput. Chem..

[937]  G. Fano,et al.  The density matrix renormalization group method. Application to the PPP model of a cyclic polyene chain. , 1998, cond-mat/9803071.

[938]  R. Stokes THE VAN DER WAALS RADII OF GASEOUS IONS OF THE NOBLE GAS STRUCTURE IN RELATION TO HYDRATION ENERGIES , 1964 .

[939]  K. Heinzinger,et al.  On the hydration of the beryllium ion , 1989 .

[940]  Jun Deng,et al.  PM3(tm) Analysis of Transition-Metal Complexes , 1999, J. Chem. Inf. Comput. Sci..

[941]  Tom K Woo,et al.  Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional. , 2009, Journal of chemical theory and computation.

[942]  Peter Comba,et al.  An efficient fluctuating charge model for transition metal complexes , 2013, J. Comput. Chem..

[943]  J. Seminario,et al.  Ab Initio Analysis and Harmonic Force Fields of Gallium Nitride Nanoclusters , 2011 .

[944]  Yuan-Ping Pang,et al.  Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design , 2009, PloS one.

[945]  Benjamin Williams-Hubbard,et al.  DommiMOE: An implementation of ligand field molecular mechanics in the molecular operating environment , 2005, J. Comput. Chem..

[946]  K. Merz,et al.  Computational studies of the farnesyltransferase ternary complex part I: substrate binding. , 2005, Biochemistry.

[947]  Youngdo Won Force field for monovalent, divalent, and trivalent cations developed under the solvent boundary potential. , 2012, The journal of physical chemistry. A.

[948]  M. Kaukonen,et al.  Lennard‐Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations , 2012, J. Comput. Chem..

[949]  Alan Grossfield,et al.  Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. , 2006, The journal of physical chemistry. B.

[950]  Nathan J. DeYonker,et al.  Accurate thermochemistry for transition metal complexes from first-principles calculations. , 2009, The Journal of chemical physics.

[951]  Randall Q Snurr,et al.  An Extended Charge Equilibration Method. , 2012, The journal of physical chemistry letters.

[952]  Kasper P. Jensen,et al.  Performance of density functionals for first row transition metal systems. , 2007, The Journal of chemical physics.

[953]  H. Kayı AM1* parameters for gold , 2010, Journal of molecular modeling.

[954]  A. Alexandrova,et al.  Computational treatment of metalloproteins. , 2015, The journal of physical chemistry. B.

[955]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[956]  K. Refson,et al.  Dynamics of a Highly Charged Ion in Aqueous Solutions: MD Simulations of Dilute CrCl3 Aqueous Solutions Using Interaction Potentials Based on the Hydrated Ion Concept , 1998 .

[957]  George A. Kaminski,et al.  Importance of electrostatic polarizability in calculating cysteine acidity constants and copper(I) binding energy of Bacillus subtilis CopZ , 2012, J. Comput. Chem..

[958]  P. Kollman,et al.  Molecular Dynamics Simulations on Solvated Biomolecular Systems: The Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA, and Proteins , 1995 .

[959]  John P. Perdew,et al.  Jacob’s ladder of density functional approximations for the exchange-correlation energy , 2001 .

[960]  R. Blessing,et al.  Topological analysis of experimental electron densities , 1999 .

[961]  G. Vineyard,et al.  THE DYNAMICS OF RADIATION DAMAGE , 1960 .

[962]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[963]  Nohad Gresh,et al.  Polarizable molecular mechanics studies of Cu(I)/Zn(II) superoxide dismutase: Bimetallic binding site and structured waters , 2014, J. Comput. Chem..

[964]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[965]  U. Suter,et al.  Atomic Charges for Classical Simulations of Polar Systems , 2004 .

[966]  Nohad Gresh,et al.  Energetics of Zn2+ binding to a series of biologically relevant ligands: A molecular mechanics investigation grounded on ab initio self‐consistent field supermolecular computations , 1995, J. Comput. Chem..

[967]  Michael J. S. Dewar,et al.  Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method , 1975 .

[968]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[969]  D. Bhattacharya,et al.  Performance of the widely used Minnesota density functionals for the prediction of heat of formations, ionization potentials of some benchmarked first row transition metal complexes. , 2013, The journal of physical chemistry. A.

[970]  White,et al.  Real-space quantum renormalization groups. , 1992, Physical review letters.

[971]  J. Leyte,et al.  An NMR contribution to the interpretation of the dynamical behavior of water molecules as a function of the magnesium chloride concentration at 25.degree.C , 1987 .

[972]  W. L. Jorgensen,et al.  Design, synthesis, and protein crystallography of biaryltriazoles as potent tautomerase inhibitors of macrophage migration inhibitory factor. , 2015, Journal of the American Chemical Society.

[973]  David W. Johnson,et al.  Molecular Mechanics Calculations in Coordination Chemistry , 1984 .

[974]  J. Gomes,et al.  Simulation of water solutions of Ni2+ at infinite dilution , 1993 .

[975]  S. Lippard,et al.  Synthetic models for non-heme carboxylate-bridged diiron metalloproteins: strategies and tactics. , 2004, Chemical reviews.

[976]  F. Hund Zur Frage der chemischen Bindung. II , 1932 .

[977]  B. Bosnich,et al.  Principles of mononucleating and binucleating ligand design. , 2004, Chemical reviews.

[978]  R. Siliciano,et al.  Potent Inhibitors Active against HIV Reverse Transcriptase with K101P, a Mutation Conferring Rilpivirine Resistance. , 2015, ACS medicinal chemistry letters.

[979]  Timothy Clark,et al.  AM1* parameters for manganese and iron , 2010, Journal of molecular modeling.

[980]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[981]  Alexander D. MacKerell,et al.  A polarizable model of water for molecular dynamics simulations of biomolecules , 2006 .

[982]  Cui Liu,et al.  Development of a Polarizable Force Field Using Multiple Fluctuating Charges per Atom. , 2010, Journal of chemical theory and computation.

[983]  Pavel Jungwirth,et al.  Specific ion effects at the air/water interface. , 2006, Chemical reviews.

[984]  Piotr Cieplak,et al.  Polarization effects in molecular mechanical force fields , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[985]  E. B. Wilson,et al.  A Method of Obtaining the Expanded Secular Equation for the Vibration Frequencies of a Molecule , 1939 .

[986]  K. L. D. M. Weerawardene,et al.  Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. , 2015, Chemical reviews.

[987]  D. N. Card,et al.  Monte Carlo Estimation of the Free Energy by Multistage Sampling , 1972 .

[988]  J. Hinze,et al.  ELECTRONEGATIVITY: III. ORBITAL ELECTRONEGATIVITIES AND ELECTRON AFFINITIES OF TRANSITION METALS , 1963 .

[989]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[990]  A. T. Hagler,et al.  Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields , 1979 .

[991]  V. Barone,et al.  Development and validation of an integrated computational approach for the study of ionic species in solution by means of effective two-body potentials. The case of Zn2+, Ni2+, and Co2+ in aqueous solutions. , 2002, Journal of the American Chemical Society.

[992]  R. M. Allen,et al.  Iron−Sulfur Proteins with Nonredox Functions , 1996 .

[993]  R. Cramer,et al.  Validation of the general purpose tripos 5.2 force field , 1989 .

[994]  William N. Lipscomb,et al.  Recent Advances in Zinc Enzymology. , 1996, Chemical reviews.

[995]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[996]  D. Rorabacher,et al.  Electron transfer by copper centers. , 2004, Chemical reviews.

[997]  Ping Qian,et al.  A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics. , 2006, The Journal of chemical physics.

[998]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[999]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[1000]  Filipp Furche,et al.  The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. , 2006, The Journal of chemical physics.

[1001]  B. Coe,et al.  Trans-effects in octahedral transition metal complexes , 2000 .

[1002]  Janet E. Jones On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature , 1924 .

[1003]  Michal Otyepka,et al.  Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations. , 2010, Physical chemistry chemical physics : PCCP.