Semi‐parametric Regression under Model Uncertainty: Economic Applications[Link]

Abstract Economic theory does not always specify the functional relationship between dependent and explanatory variables, or even isolate a particular set of covariates. This means that model uncertainty is pervasive in empirical economics. In this paper, we indicate how Bayesian semi‐parametric regression methods in combination with stochastic search variable selection can be used to address two model uncertainties simultaneously: (i) the uncertainty with respect to the variables which should be included in the model and (ii) the uncertainty with respect to the functional form of their effects. The presented approach enables the simultaneous identification of robust linear and nonlinear effects. The additional insights gained are illustrated on applications in empirical economics, namely willingness to pay for housing, and cross‐country growth regression.

[1]  Paul Hofmarcher,et al.  Bivariate jointness measures in Bayesian Model Averaging: Solving the conundrum , 2018, Journal of Macroeconomics.

[2]  G. Malsiner‐Walli,et al.  Comparing Spike and Slab Priors for Bayesian Variable Selection , 2016, 1812.07259.

[3]  Martin Feldkircher,et al.  Bayesian model averaging employing fixed and flexible priors: The BMS package for R , 2015 .

[4]  Jonathan R.W. Temple,et al.  Growth Econometrics for Agnostics and True Believers , 2015 .

[5]  Christopher F. Parmeter,et al.  Applied Nonparametric Econometrics , 2015 .

[6]  Christopher F. Parmeter,et al.  Does Education Matter for Economic Growth? , 2014 .

[7]  N. Pillai,et al.  Dirichlet–Laplace Priors for Optimal Shrinkage , 2014, Journal of the American Statistical Association.

[8]  Kurt Hornik,et al.  Model uncertainty and aggregated default probabilities: new evidence from Austria , 2014 .

[9]  Christopher F. Parmeter,et al.  Comparison Of Model Averaging Techniques: Assessing Growth Determinants , 2012 .

[10]  Christopher F. Parmeter,et al.  Growth Empirics Without Parameters , 2012 .

[11]  James Mitchell,et al.  The Drivers of International Migration to the UK: A Panel�?Based Bayesian Model Averaging Approach , 2011 .

[12]  J. Cuaresma How different is Africa? A comment on Masanjala and Papageorgiou , 2011 .

[13]  M. Steel,et al.  Mixtures of G-Priors for Bayesian Model Averaging with Economic Application , 2011 .

[14]  F. Scheipl spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R , 2011, 1105.5253.

[15]  L. Fahrmeir,et al.  Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models , 2011, 1105.5250.

[16]  Ludwig Fahrmeir,et al.  Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection , 2010, Stat. Comput..

[17]  Jacob M. Montgomery,et al.  Bayesian Model Averaging: Theoretical Developments and Practical Applications , 2010, Political Analysis.

[18]  R. O’Hara,et al.  A review of Bayesian variable selection methods: what, how and which , 2009 .

[19]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[20]  Christian Henn,et al.  Trade Creation and Diversion Revisited: Accounting for Model Uncertainty and Natural Trading Partner Effects , 2008 .

[21]  Marek Jarocinski,et al.  Determinants of Economic Growth : Will Data Tell ? † , 2008 .

[22]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[23]  Gary Koop,et al.  Semiparametric Bayesian inference in smooth coefficient models , 2006 .

[24]  S. Wood,et al.  Generalized Additive Models: An Introduction with R , 2006 .

[25]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[26]  Mingliang Li,et al.  Returns to Schooling and Bayesian Model Averaging: A Union of Two Literatures , 2004 .

[27]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[28]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[29]  M. Steel,et al.  Model uncertainty in cross-country growth regressions , 2001 .

[30]  W. Brock,et al.  Growth empirics and reality , 2001 .

[31]  X. Sala-i-Martin,et al.  Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (Bace) Approach , 2000 .

[32]  R. Kohn,et al.  Nonparametric regression using Bayesian variable selection , 1996 .

[33]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[34]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[35]  D. Rubinfeld,et al.  Hedonic housing prices and the demand for clean air , 1978 .

[36]  Christopher F. Parmeter,et al.  Model Averaging Over Nonparametric Estimators , 2016 .

[37]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[38]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[39]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .