Molecular engineering of zinc phthalocyanines with phosphinic acid anchoring groups.

Keywords: dyes ; pigments ; light harvesting ; phthalocyanines ; sensitizers ; solar cells ; Sensitized Solar-Cells ; Photovoltaic Cells ; Tio2 Films ; Performance ; Efficiency ; Dyes Reference EPFL-ARTICLE-176099doi:10.1002/anie.201105950View record in Web of Science Record created on 2012-04-05, modified on 2016-08-09

[1]  M. Grätzel,et al.  Structure-function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. , 2009, Chemistry.

[2]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[3]  J. Durrant,et al.  Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. , 2008, Journal of the American Chemical Society.

[4]  J. Durrant,et al.  Zn(II) versus Ru(II) phthalocyanine-sensitised solar cells. A comparison between singlet and triplet electron injectors , 2010 .

[5]  T. Torres,et al.  Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. , 2007, Chemical communications.

[6]  M. Martínez‐Díaz,et al.  On the Significance of Phthalocyanines in Solar Cells , 2010 .

[7]  Jun-Ho Yum,et al.  Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. , 2007, Angewandte Chemie.

[8]  Yuan Wang,et al.  Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[9]  Carl C. Wamser,et al.  Porphyrins and phthalocyanines in solar photovoltaic cells , 2010 .

[10]  J. Durrant,et al.  Slow electron injection on Ru-Phthalocyanine sensitized TiO2. , 2007, Journal of the American Chemical Society.

[11]  M. Martínez‐Díaz,et al.  Phthalocyanines: colorful macroheterocyclic sensitizers for dye-sensitized solar cells , 2011 .

[12]  Ryota Goto,et al.  Enhancement of incident photon-to-current conversion efficiency for phthalocyanine-sensitized solar cells by 3D molecular structuralization. , 2010, Journal of the American Chemical Society.

[13]  M. Martínez‐Díaz,et al.  Lighting porphyrins and phthalocyanines for molecular photovoltaics. , 2010, Chemical communications.

[14]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[15]  Jun-Ho Yum,et al.  Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine. , 2007, Angewandte Chemie.

[16]  T. Katoh,et al.  Synthesis of sterically hindered phthalocyanines and their applications to dye-sensitized solar cells. , 2008, Dalton transactions.

[17]  M. Grätzel,et al.  Increasing the efficiency of zinc-phthalocyanine based solar cells through modification of the anchoring ligand , 2011 .

[18]  S. Zakeeruddin,et al.  Effect of anchoring groups in zinc phthalocyanine on the dye-sensitized solar cell performance and stability , 2011 .

[19]  M. Grätzel,et al.  Effect of coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  Yuyang Jiang,et al.  Proline/pipecolinic acid-promoted copper-catalyzed P-arylation. , 2006, The Journal of organic chemistry.