Lower Bounds for Computations with the Floor Operation

We prove an Ω(√log n) lower bound on the depth of any decision tree with operations {+, −, *, /, ⌊·⌋, <}, that decides whether an integer is a perfect square, for any n-bit integer. We then extend the arguments to obtain the same lower bound on the time complexity of any RAM program with operations {+, −, *, /, ⌊·⌋, <} that solves the problem. Our proof technique can be used to derive lower bounds for many other problems. Another related result is described in a companion paper ([IBM Research Report RC 14271], [Proceedings of the 29th FOCS]).

[1]  A. Ralston A first course in numerical analysis , 1965 .

[2]  Alan Cobham,et al.  The Recognition Problem for the Set of Perfect Squares , 1966, SWAT.

[3]  A. Householder The numerical treatment of a single nonlinear equation , 1970 .

[4]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[5]  Arnold Schönhage,et al.  On the Power of Random Access Machines , 1979, ICALP.

[6]  Janos Simon Division in Idealized Unit Cost RAMS , 1981, J. Comput. Syst. Sci..

[7]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[8]  Alfred Schmitt,et al.  On the Computational Power of the Floor Function , 1982, Inf. Process. Lett..

[9]  J. Michael Steele,et al.  Lower Bounds for Algebraic Decision Trees , 1982, J. Algorithms.

[10]  Volker Strassen,et al.  The Computational Complexity of Continued Fractions , 1983, SIAM J. Comput..

[11]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[12]  Oscar H. Ibarra,et al.  On the Control Power of Integer Division , 1983, Theor. Comput. Sci..

[13]  Michael J. O'Donnell,et al.  Lower Bounds for Sorting with Realistic Instruction Sets , 1985, IEEE Transactions on Computers.

[14]  Baruch Schieber,et al.  Lower bounds for integer greatest common divisor computations , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[15]  Friedhelm Meyer auf der Heide,et al.  On the Limits of Computations with the Floor Function , 1988, Inf. Comput..

[16]  Friedhelm Meyer auf der Heide,et al.  On Computations with Integer Division , 1988, RAIRO Theor. Informatics Appl..