Wide-IF-Band CMOS Mixer Design

A wide-IF-band transistor mixer has been designed using a 0.13-¿m RF-CMOS process where its RF frequency is 8.7-17.4 GHz, local oscillator (LO) fixed at 17.4 GHz, and IF up to 8.7 GHz. Proper layout arrangement for the Marchand balun has been discussed and then implemented; the output amplitude and phase imbalance are less than 0.5 dB and 1 ° measured in the RF bandwidth. Related theories for the core mixing circuit are explored extensively and verified through simulation; broad bandwidth of the resistive double-balanced mixer is then confirmed in the IF aspect. The designed mixer has more than 10-dB conversion gain, matched RF, IF, and LO ports, and good port isolation over the intended wide bandwidth. The input-referred P1 dB is -17.5 dBm at 9 GHz and -16 dBm at 13 GHz. The third-order input intercept point is -6 dBm at 9 GHz and -5 dBm at 13 GHz. The noise figure is 7 dB at 9 GHz and 12.6 dB at 13 GHz. The power consumption is 40 mW for this 1.3-mm2 mixer chip.

[1]  S.P. Voinigescu,et al.  165-GHz Transceiver in SiGe Technology , 2008, IEEE Journal of Solid-State Circuits.

[2]  Robert A. Pucel,et al.  Performance of GaAs MESFET Mixers at X Band , 1976 .

[3]  V. Krozer,et al.  Analysis and design of wide-band SiGe HBT active mixers , 2005, IEEE Transactions on Microwave Theory and Techniques.

[4]  G. Kano,et al.  A GaAs double-balanced dual-gate FET mixer IC for UHF receiver front-end applications , 1985, IEEE Transactions on Electron Devices.

[5]  K.K. O,et al.  A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13-/spl mu/m CMOS technology , 2005, IEEE Microwave and Wireless Components Letters.

[6]  A. Babakhani,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting , 2006, IEEE Journal of Solid-State Circuits.

[7]  A. R. Kerr,et al.  Noise and Loss in Balanced and Subharmonically Pumped Mixers: Part I--Theory , 1979 .

[8]  C. J. Trantanella Ultra-small MMIC mixers for K- and Ka-band communications , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[9]  Y. Yamauchi,et al.  20 GHz 5 dB gain analog multipliers with AlGaAs/GaAs HBTs , 1991 .

[10]  Herbert Zirath,et al.  A novel single device balanced resistive HEMT mixer , 1995, IMS 1995.

[11]  Kenjiro Nishikawa,et al.  Compact and broad-band three-dimensional MMIC balun , 1999 .

[12]  D. Kossives,et al.  Design and characterization of multilayer spiral transmission-line baluns , 1999 .

[13]  N. Marchand,et al.  Transmission-line Conversion Transformers , 1944 .

[14]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.

[15]  Kwyro Lee,et al.  Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors , 2004, IEEE Journal of Solid-State Circuits.

[16]  Hui-I Wu,et al.  A Folded Current-Reused Down-Converter Mixer for Ultra Wide-Band Applications , 2007, 2007 Asia-Pacific Microwave Conference.

[17]  B. Gilbert,et al.  The MICROMIXER: a highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage , 1997, IEEE J. Solid State Circuits.

[18]  C.F. Jou,et al.  A Low Voltage Mixer With Improved Noise Figure , 2009, IEEE Microwave and Wireless Components Letters.

[19]  W. Durr,et al.  Low-power low-noise active mixers for 5.7 and 11.2 GHz using commercially available SiGe HBT MMIC technology , 1998 .

[20]  S. Maas A GaAs MESFET Mixer with Very Low Intermodulation , 1987 .

[21]  J. Shibata,et al.  A high performance GaAs MMIC upconverter with an automatic gain control amplifier , 1997, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 19th Annual Technical Digest 1997.

[22]  Robert Hu Wide-Band Matched LNA Design Using Transistor ’ s Intrinsic Gate – Drain Capacitor , 2006 .

[23]  J. H. Lepoff,et al.  Improved Intermodulation Rejection in Mixers , 1966 .

[24]  Guo-Wei Huang,et al.  Monolithic Broadband Gilbert Micromixer With an Integrated Marchand Balun Using Standard Silicon IC Process , 2006, IEEE Transactions on Microwave Theory and Techniques.

[25]  Ian D. Robertson,et al.  Analysis and design of impedance-transforming planar Marchand baluns , 2001 .

[26]  Tzu-Chao Yan,et al.  A CMOS Up-Conversion Mixer with Wide IF Bandwidth for 60-GHz Applications , 2009, 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[27]  M. C. Tsai A new compact wideband balun , 1993, IEEE 1993 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest of Papers.

[28]  S. Weinreb,et al.  A cryogenic focal plane array for 85-115 GHz using MMIC preamplifiers , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[29]  C. Trantanella,et al.  Low cost, plastic encapsulated mixers for C/X-band applications , 1998, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 20th Annual. Technical Digest 1998 (Cat. No.98CH36260).

[30]  Y. Imai,et al.  A DC to 38-GHz distributed analog multiplier using InP HEMT's , 1994, IEEE Microwave and Guided Wave Letters.

[31]  Wen-Hui Chen,et al.  Three-Dimensional Fully Symmetric Inductors, Transformer, and Balun in CMOS Technology , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Youngwoo Kwon,et al.  Experimental characteristics and performance analysis of monolithic InP-based HEMT mixers at W-band , 1993 .

[33]  R. Hu,et al.  Wide-band matched LNA design using transistor's intrinsic gate-drain capacitor , 2006, IEEE Transactions on Microwave Theory and Techniques.

[34]  D. N. Held,et al.  Conversion Loss and Noise of Microwave and Millimeterwave Mixers: Part 1--Theory , 1978 .

[35]  F. Ellinger,et al.  26.5-30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology with high linearity for WLAN , 2005, IEEE Transactions on Microwave Theory and Techniques.

[36]  K.K. O,et al.  A low-power up-conversion CMOS mixer for 22-29-GHz ultra-wideband applications , 2006, IEEE Transactions on Microwave Theory and Techniques.