Atmospheric correction of a seasonal time series of Hyperion EO-1 images and red edge inflection point calculation

This study covers the preprocessing and atmospheric correction of a seasonal time series five Hyperion EO-1 images from Hyytiälä, Southern Finland (61° 51'N, 24° 17'E). The time series ranges from May 5th 2010 to July 11th 2010, covering much of the growing season and the seasonal changes in vegetation reflectance. Atmospheric correction of the time series was done with Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and ATmospheric CORrection (ATCOR) algorithms for comparison. Both algorithms performed well with Hyperion imagery. Different red edge inflection point (REIP) calculation methods were analyzed to determine their applicability for Hyperion imagery. REIP was calculated using four-point interpolation, Lagrangian interpolation, and fifth order polynomial fitting. Due to the dynamics of the red edge, polynomial fitting was seen as the best method for calculating the REIP. REIP did not correlate strongly with Leaf Area Index (LAI) but a stronger correlation was observed with understory REIP.

[1]  Gail P. Anderson,et al.  Analysis of Hyperion data with the FLAASH atmospheric correction algorithm , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[2]  D. Watson Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years , 1947 .

[3]  Ruiliang Pu,et al.  Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index , 2003, IEEE Trans. Geosci. Remote. Sens..

[4]  D. Lamb,et al.  Spectral Properties of , 2003 .

[5]  G. Guyot,et al.  Utilisation de la Haute Resolution Spectrale pour Suivre L'etat des Couverts Vegetaux , 1988 .

[6]  D. C. Robertson,et al.  MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .

[7]  Tim R. McVicar,et al.  Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..

[8]  T. Malthus,et al.  The empirical line method for the atmospheric correction of IKONOS imagery , 2003 .

[9]  J. Peñuelas,et al.  The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. , 1994 .

[10]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[11]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[12]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[13]  S. T. Gower,et al.  Leaf area index of boreal forests: theory, techniques, and measurements , 1997 .

[14]  Xiang Gao,et al.  Multisensor comparisons and validation of MODIS vegetation indices at the semiarid Jornada experimental range , 2003, IEEE Trans. Geosci. Remote. Sens..

[15]  Juha Suomalainen,et al.  A comparison of methods for the retrieval of surface reflectance factor from multitemporal SPOT HRV, HRVIR, and HRG multispectral satellite imagery , 2010 .

[16]  J. Lindsey,et al.  PhotochemCAD ‡ : A Computer‐Aided Design and Research Tool in Photochemistry , 1998 .

[17]  Miina Rautiainen,et al.  Optimizing the sampling scheme for LAI-2000 measurements in a boreal forest , 2012 .

[18]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[19]  M. Cho,et al.  A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method , 2006 .

[20]  J. Hogg Quantitative remote sensing of land surfaces , 2004 .

[21]  C. Tucker,et al.  Increased plant growth in the northern high latitudes from 1981 to 1991 , 1997, Nature.

[22]  E. Schanda,et al.  Remote sensing of the environment , 1978, Naturwissenschaften.

[23]  David A. Landgrebe,et al.  Hyperspectral data analysis and supervised feature reduction via projection pursuit , 1999, IEEE Trans. Geosci. Remote. Sens..

[24]  A. Skidmore,et al.  Narrow band vegetation indices overcome the saturation problem in biomass estimation , 2004 .

[25]  M. Schlerf,et al.  Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .

[26]  Johann Bodechtel,et al.  Imaging spectroscopy: fundamentals and prospective applications. , 1992 .

[27]  G. Bonham-Carter Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data , 1988 .

[28]  Miina Rautiainen,et al.  Seasonal reflectance dynamics of common understory types in a northern European boreal forest , 2011 .

[29]  Eric Maliet,et al.  A superspectral microsatellite system for GMES land cover applications , 2006 .

[30]  Hao Chen,et al.  Processing Hyperion and ALI for forest classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[31]  John Shepanski,et al.  Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[32]  D. M. Gates,et al.  Spectral Properties of Plants , 1965 .

[33]  Robert V. Demicco,et al.  Earth Surface Processes, Landforms and Sediment Deposits: Overview of the Earth , 2008 .

[34]  B. T. San,et al.  EVALUATION OF DIFFERENT ATMOSPHERIC CORRECTION ALGORITHMS FOR EO-1 HYPERION IMAGERY , 2010 .

[35]  B. T. San,et al.  EVALUATI ON OF DIFFERENT ATMOSPHERIC CORRECTION ALGORITHMS FOR EO-1 HYPERION IMAGERY , 2010 .

[36]  Robert A. Neville,et al.  Automatic destriping of Hyperion imagery based on spectral moment matching , 2008 .

[37]  Qiang Liu,et al.  Leaf Area Index , 2014 .

[38]  Hongliang Fang,et al.  Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods , 2001, IEEE Trans. Geosci. Remote. Sens..

[39]  Bo-Cai Gao,et al.  A Review of Atmospheric Correction Techniques for Hyperspectral Remote Sensing of Land Surfaces and Ocean Color , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[40]  Zheng Niu,et al.  Evaluation of atmospheric correction using FLAASH , 2008, 2008 International Workshop on Earth Observation and Remote Sensing Applications.

[41]  Fumin Wang,et al.  Hyperspectral vegetation indices and their relationships with rice agronomics variables , 2004, SPIE Optics + Photonics.

[42]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[43]  Mark Cutler,et al.  Estimating Canopy Chlorophyll Concentration from Field and Airborne Spectra , 1999 .

[44]  John R. Jensen Introductory Digital Image Processing , 2004 .

[45]  Eero Nikinmaa,et al.  Station for Measuring Ecosystem-Atmosphere Relations: SMEAR , 2013 .

[46]  A. Skidmore,et al.  Leaf Area Index derivation from hyperspectral vegetation indicesand the red edge position , 2009 .

[47]  E. Kanemasu,et al.  Use of second derivatives of canopy reflectance for monitoring prairie vegetation over different soil backgrounds , 1993 .

[48]  Stephen G. Ungar,et al.  Overview of the Earth Observing One (EO-1) mission , 2003, IEEE Trans. Geosci. Remote. Sens..

[49]  P. Curran,et al.  A new technique for interpolating the reflectance red edge position , 1998 .

[50]  Robert A. Neville,et al.  Preprocessing of EO-1 Hyperion data , 2006 .

[51]  David P. Bannon,et al.  Hyperspectral imaging: Cubes and slices , 2009 .

[52]  Hongliang Fang,et al.  Atmospheric correction of Landsat ETM+ land surface imagery: Part I: Methods , 2001 .

[53]  M. Rautiainen,et al.  Seasonal reflectance trends of hemiboreal birch forests , 2009 .

[54]  Jeffery J. Puschell,et al.  Hyperspectral imagers for current and future missions , 2000, SPIE Defense + Commercial Sensing.

[55]  Naoto Matsumura,et al.  Seasonal patterns of canopy structure, biochemistry and spectral reflectance in a broad-leaved deciduous Fagus crenata canopy , 2002 .

[56]  Helmuth Horvath,et al.  On the applicability of the koschmieder visibility formula , 1971 .