Detecting Water Vapor Variability during Heavy Precipitation Events in Hong Kong Using the GPS Tomographic Technique

AbstractWater vapor has a strong influence on the evolution of heavy precipitation events due to the huge latent heat associated with the phase change process of water. Accurate monitoring of atmospheric water vapor distribution is thus essential in predicting the severity and life cycle of heavy rain. This paper presents a systematic study on the application of tomographic solutions to investigate water vapor variations during heavy precipitation events. Using global positioning system (GPS) observations, the wet refractivity field was constructed at a temporal resolution of 30 min for three heavy precipitation events occurring in Hong Kong, China, in 2010–14. The zenith wet delay (ZWD) is shown to be a good indicator in observing the water vapor evolution in heavy rain events. The variabilities of water vapor at five altitude layers ( 5000 m) were examined. It revealed that water vapor above 3000 m has larger fluctuation than that under 3000 m, though it accou...

[1]  Bob E. Schutz,et al.  Monitoring precipitable water vapor in real-time using global navigation satellite systems , 2013, Journal of Geodesy.

[2]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[3]  G. Ruffini,et al.  Tropospheric Tomography using GPS Estimated Slant Delays , 2008 .

[4]  Zhizhao Liu,et al.  Analysis and modelling of water vapour and temperature changes in Hong Kong using a 40‐year radiosonde record: 1973–2012 , 2015 .

[5]  Christian Rocken,et al.  Obtaining single path phase delays from GPS double differences , 2000 .

[6]  Joël Van Baelen,et al.  Study of water vapor vertical variability and possible cloud formation with a small network of GPS stations , 2009 .

[7]  Jan-Peter Muller,et al.  Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate‐Resolution Imaging Spectroradiometer measurements , 2003 .

[8]  Paul Tregoning,et al.  Accuracy of absolute precipitable water vapor estimates from GPS observations , 1998 .

[9]  Steven Businger,et al.  GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water , 1996 .

[10]  Witold Rohm,et al.  Local tomography troposphere model over mountains area , 2008 .

[11]  Maorong Ge,et al.  Development of a GNSS water vapour tomography system using algebraic reconstruction techniques , 2011 .

[12]  Witold Rohm,et al.  Capturing the Signature of Severe Weather Events in Australia Using GPS Measurements , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[13]  Gunnar Elgered,et al.  Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden , 2012, Journal of Geodesy.

[14]  Giovanni Emilio Perona,et al.  Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks , 2011 .

[15]  Fabian Hurter,et al.  4D GPS water vapor tomography: new parameterized approaches , 2011 .

[16]  G. Veis The Use of Artificial Satellites for Geodesy , 1963 .

[17]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[18]  N. Clerbaux,et al.  Preliminary signs of the initiation of deep convection by GNSS , 2012 .

[19]  S. Lutz,et al.  High-resolution GPS tomography in view of hydrological hazard assessment , 2008 .

[20]  Richard B. Langley,et al.  Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI , 2001 .

[21]  W. Elliott,et al.  Tropospheric Water Vapor Climatology and Trends over North America: 1973–93 , 1996 .

[22]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[23]  Véronique Ducrocq,et al.  A GPS network for tropospheric tomography in the framework of the Mediterranean hydrometeorological observatory Cévennes-Vivarais (southeastern France) , 2013 .

[24]  Witold Rohm,et al.  Detecting Severe Weather using GPS Tomography: An Australian Case Study , 2012 .

[25]  Witold Rohm,et al.  Detecting severe weather in Australia using GPS tomography , 2012 .

[26]  Steven Businger,et al.  Sensing atmospheric water vapor with the global positioning system , 1993 .

[27]  G. Ruffini,et al.  4D tropospheric tomography using GPS slant wet delays , 2000 .

[28]  Elmar Brockmann,et al.  Tomographic determination of the spatial distribution of water vapor using GPS observations , 2006 .

[29]  Jan M. Johansson,et al.  Measuring regional atmospheric water vapor using the Swedish Permanent GPS Network , 1997 .

[30]  Armin Raabe,et al.  Preconditions to ground based GPS water vapour tomography , 2007 .

[31]  Witold Rohm,et al.  Limited constraint, robust Kalman filtering for GNSS troposphere tomography , 2014 .

[32]  O. Ito,et al.  Flash flooding resistance of rice genotypes of Oryza sativa L., O. glaberrima Steud., and Interspecific hybridization progeny , 2008 .

[33]  Yanyan Liu,et al.  Near real-time water vapor tomography using ground-based GPS and meteorological data: long-term experiment in Hong Kong , 2014 .

[34]  Pak Wai Chan,et al.  A multi‐sensor study of water vapour from radiosonde, MODIS and AERONET: a case study of Hong Kong , 2013 .

[35]  Marie-Noëlle Bouin,et al.  GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment , 2005 .

[36]  J. Saastamoinen Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites , 2013 .

[37]  M. Tippett Extreme weather and climate , 2018, npj Climate and Atmospheric Science.

[38]  Qile Zhao,et al.  Assessment of precipitable water vapor derived from ground-based BeiDou observations with Precise Point Positioning approach , 2015 .

[39]  F. Webb,et al.  An Introduction to the GIPSY/OASIS-II , 1993 .

[40]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[41]  V. Mendes,et al.  Modeling the neutral-atmosphere propagation delay in radiometric space techniques , 1998 .

[42]  A. Degaetano,et al.  A Statistical Comparison of the Properties of Flash Flooding and Nonflooding Precipitation Events in Portions of New York and Pennsylvania , 2008 .

[43]  Ni-Bin Chang,et al.  Urban Flash Flood Monitoring, Mapping and Forecasting via a Tailored Sensor Network System , 2006, 2006 IEEE International Conference on Networking, Sensing and Control.

[44]  Li Chengcai,et al.  Preliminary results of 4-D water vapor tomography in the troposphere using GPS , 2006 .

[45]  Paul J. Pilon,et al.  Guidelines for Reducing Flood Losses , 2004 .

[46]  M. Troller,et al.  GPS based determination of the integrated and spatially distributed water vapor in the troposphere , 2004 .

[47]  S. M. Shrestha,et al.  Investigations into the estimation of tropospheric delay and wet refractivity using GPS measurements , 2003 .

[48]  Galina Dick,et al.  GNSS water vapour tomography – Expected improvements by combining GPS, GLONASS and Galileo observations , 2011 .

[49]  Galina Dick,et al.  Precipitation on the lee side of the Vosges Mountains: Multi-instrumental study of one case from the COPS campaign , 2012 .

[50]  Zhizhao Liu,et al.  Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model , 2014, Journal of Geodesy.

[51]  K. Mohanakumar Stratosphere Troposphere Interactions: An Introduction , 2008 .

[52]  M. Hagen,et al.  On the relationship between water vapour field evolution and the life cycle of precipitation systems , 2011 .