A new data characterization for selecting clustering algorithms using meta-learning

Abstract Meta-learning has been successfully used for algorithm recommendation tasks. It uses machine learning to induce meta-models able to predict the best algorithms for a new dataset. In this paper, meta-models are applied to a set of meta-features, describing a dataset, to predict the performance of clustering algorithms applied to this dataset. The paper also proposes a new set of meta-features, based on correlation and dissimilarity measures. Experimental results show that these meta-features improve the recommendation. Additionally, this paper evaluates the importance of each meta-feature for the recommendation.

[1]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Sebastian Thrun,et al.  Learning to Learn , 1998, Springer US.

[3]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[4]  Jianhong Wu,et al.  Data clustering - theory, algorithms, and applications , 2007 .

[5]  W. R. Stephenson Distribution Free Tests , 1990 .

[6]  Michalis Vazirgiannis,et al.  On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.

[7]  R. Boddy,et al.  Statistical Methods in Practice: For Scientists and Technologists , 2009 .

[8]  Ricardo Vilalta,et al.  Metalearning - Applications to Data Mining , 2008, Cognitive Technologies.

[9]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[10]  John Riedl,et al.  When recommenders fail: predicting recommender failure for algorithm selection and combination , 2012, RecSys.

[11]  James Bailey,et al.  Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..

[12]  Siddheswar Ray,et al.  Determination of Number of Clusters in K-Means Clustering and Application in Colour Image Segmentation , 2000 .

[13]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[14]  L. Hubert,et al.  Measuring the Power of Hierarchical Cluster Analysis , 1975 .

[15]  Teresa Bernarda Ludermir,et al.  Meta-learning approaches to selecting time series models , 2004, Neurocomputing.

[16]  Marcílio Carlos Pereira de Souto,et al.  Selecting Machine Learning Algorithms Using the Ranking Meta-Learning Approach , 2011, Meta-Learning in Computational Intelligence.

[17]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[18]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Meta-learning to select the best meta-heuristic for the Traveling Salesman Problem: A comparison of meta-features , 2016, Neurocomputing.

[19]  Boris Delibasic,et al.  Extending meta-learning framework for clustering gene expression data with component-based algorithm design and internal evaluation measures , 2016, Int. J. Data Min. Bioinform..

[20]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Alexandros Kalousis,et al.  Algorithm selection via meta-learning , 2002 .

[22]  Vojislav Kecman,et al.  Multi-target support vector regression via correlation regressor chains , 2017, Inf. Sci..

[23]  Aderemi Oluyinka Adewumi,et al.  Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem , 2017, Expert Syst. Appl..

[24]  Bogdan Gabrys,et al.  Meta-learning for time series forecasting and forecast combination , 2010, Neurocomputing.

[25]  Qinbao Song,et al.  A Generic Multilabel Learning-Based Classification Algorithm Recommendation Method , 2014, TKDD.

[26]  Ricardo Vilalta,et al.  Using Meta-Learning to Support Data Mining , 2004, Int. J. Comput. Sci. Appl..

[27]  Hendrik Blockeel,et al.  Dealing with Overlapping Clustering: A Constraint-based Approach to Algorithm Selection , 2015, MetaSel@PKDD/ECML.

[28]  Christophe G. Giraud-Carrier,et al.  The data mining advisor: meta-learning at the service of practitioners , 2005, Fourth International Conference on Machine Learning and Applications (ICMLA'05).

[29]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[30]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[31]  Taghi M. Khoshgoftaar,et al.  An Empirical Study of Learning from Imbalanced Data Using Random Forest , 2007 .

[32]  Bernd Bischl,et al.  To tune or not to tune: Recommending when to adjust SVM hyper-parameters via meta-learning , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[33]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[34]  Stan Matwin,et al.  Ensembles of label noise filters: a ranking approach , 2016, Data Mining and Knowledge Discovery.

[35]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[36]  Murchhana Tripathy,et al.  A Study of Algorithm Selection in Data Mining using Meta-Learning , 2017 .

[37]  Quan Sun,et al.  Pairwise meta-rules for better meta-learning-based algorithm ranking , 2013, Machine Learning.

[38]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[39]  Leandro Nunes de Castro,et al.  Clustering algorithm selection by meta-learning systems: A new distance-based problem characterization and ranking combination methods , 2015, Inf. Sci..

[40]  Alexander Schliep,et al.  Ranking and selecting clustering algorithms using a meta-learning approach , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[41]  Ricardo Vilalta,et al.  A Perspective View and Survey of Meta-Learning , 2002, Artificial Intelligence Review.

[42]  Dianhong Wang,et al.  Survey of Improving K-Nearest-Neighbor for Classification , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[43]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Metalearning and Recommender Systems: A literature review and empirical study on the algorithm selection problem for Collaborative Filtering , 2018, Inf. Sci..

[44]  Antonio González Muñoz,et al.  On the use of meta-learning for instance selection: An architecture and an experimental study , 2014, Inf. Sci..

[45]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Noise detection in the meta-learning level , 2016, Neurocomputing.

[46]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Effects of Random Sampling on SVM Hyper-parameter Tuning , 2016, ISDA.

[47]  Joost C F de Winter,et al.  Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. , 2016, Psychological methods.