Diversity and Role of Cyanobacteria and Aerobic Heterotrophic Microorganisms in Carbon Cycling in Arid Cyanobacterial Mats

[1]  S. Golubić,et al.  Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE). , 2008, FEMS microbiology ecology.

[2]  T. Steuber,et al.  Quantification of Carbonate-Ramp Sedimentation and Progradation Rates for the Late Holocene Abu Dhabi Shoreline , 2008 .

[3]  R. Abed,et al.  Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf. , 2007, Environmental microbiology.

[4]  C. McKay,et al.  Life at the edge: endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert , 2006 .

[5]  R. Abed,et al.  Effect of temperature on photosynthesis, oxygen consumption and sulfide production in an extremely hypersaline cyanobacterial mat , 2006 .

[6]  Scott R. Miller,et al.  Unexpected Diversity and Complexity of the Guerrero Negro Hypersaline Microbial Mat , 2006, Applied and Environmental Microbiology.

[7]  G. Underwood,et al.  EXTRACELLULAR MATRIX ASSEMBLY IN DIATOMS (BACILLARIOPHYCEAE). V. ENVIRONMENTAL EFFECTS ON POLYSACCHARIDE SYNTHESIS IN THE MODEL DIATOM, PHAEODACTYLUM TRICORNUTUM 1 , 2006 .

[8]  J. Schopf,et al.  Three-dimensional confocal optical imagery of precambrian microscopic organisms. , 2006, Astrobiology.

[9]  M. Kühl,et al.  Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. , 2006, FEMS microbiology ecology.

[10]  D. Dietrich,et al.  Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. , 2005, Environmental microbiology.

[11]  A. Huth,et al.  Testing the intermediate disturbance hypothesis: when will there be two peaks of diversity? , 2005 .

[12]  M. Kates,et al.  Novel Sulfonolipid in the Extremely Halophilic Bacterium Salinibacter ruber , 2004, Applied and Environmental Microbiology.

[13]  R. Abed,et al.  Identification of aerobic heterotrophic bacteria from the photic zone of a hypersaline microbial mat , 2003 .

[14]  R. Abed,et al.  Metabolic shifts in hypersaline microbial mats upon addition of organic substrates. , 2002, Environmental microbiology.

[15]  A. Oren,et al.  Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber , 2002, Extremophiles.

[16]  E. Casamayor,et al.  Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. , 2002, Environmental microbiology.

[17]  Frede Thingstad,et al.  Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. , 2002, Environmental microbiology.

[18]  R. Amann,et al.  Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. , 2002, International journal of systematic and evolutionary microbiology.

[19]  D. Kirchman The ecology of Cytophaga-Flavobacteria in aquatic environments. , 2002, FEMS microbiology ecology.

[20]  Aharon Oren,et al.  Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium , 2002, Extremophiles.

[21]  H. Flemming,et al.  Relevance of microbial extracellular polymeric substances (EPSs)--Part I: Structural and ecological aspects. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[22]  Graham Bell,et al.  Disturbance and diversity in experimental microcosms , 2000, Nature.

[23]  H. Paerl,et al.  The role of microbes in accretion, lamination and early lithification of modern marine stromatolites , 2000, Nature.

[24]  Staats,et al.  Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. , 2000, Journal of experimental marine biology and ecology.

[25]  M. Kühl,et al.  Short-term temperature effects on oxygen and sulfide cycling in a hypersaline cyanobacterial mat (Solar Lake, Egypt) , 2000 .

[26]  H. Paerl,et al.  Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. , 2000, Environmental microbiology.

[27]  E. Buskey,et al.  Hypersalinity enhances the production of extracellular polymeric substance (eps) in the texas brown tide alga, aureoumbra lagunensis (PELAGOPHYCEAE) , 2000 .

[28]  E. Epping,et al.  Photosynthesis and the dynamics of oxygen consumption in a microbial mat as calculated from transient oxygen microprofiles , 1999 .

[29]  Michael Wagner,et al.  Diversity of Sulfate-Reducing Bacteria in Oxic and Anoxic Regions of a Microbial Mat Characterized by Comparative Analysis of Dissimilatory Sulfite Reductase Genes , 1999, Applied and Environmental Microbiology.

[30]  F. Widdel,et al.  Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema) , 1999, Archives of Microbiology.

[31]  G. Muyzer,et al.  SALINITY‐DEPENDENT LIMITATION OF PHOTOSYNTHESIS AND OXYGEN EXCHANGE IN MICROBIAL MATS , 1999 .

[32]  Niels B. Ramsing,et al.  Sulfate-Reducing Bacteria and Their Activities in Cyanobacterial Mats of Solar Lake (Sinai, Egypt) , 1998, Applied and Environmental Microbiology.

[33]  G. Muyzer,et al.  The phylogeny of unicellular, extremely halotolerant cyanobacteria , 1998, Archives of Microbiology.

[34]  Lind,et al.  Extracellular matrix assembly in diatoms (Bacillariophyceae). Iii. Organization Of fucoglucuronogalactans within the adhesive stalks of achnanthes longipes , 1998, Plant physiology.

[35]  B. Jørgensen,et al.  Temperature dependence of aerobic respiration in a coastal sediment , 1998 .

[36]  Lucas J. Stal,et al.  Fermentation in cyanobacteria , 1997 .

[37]  D. M. Ward,et al.  Photosynthate partitioning and fermentation in hot spring microbial mat communities , 1996, Applied and environmental microbiology.

[38]  M. Kühl,et al.  MICROENVIRONMENTAL CONTROL OF PHOTOSYNTHESIS AND PHOTOSYNTHESIS‐COUPLED RESPIRATION IN AN EPILITHIC CYANOBACTERIAL BIOFILM 1 , 1996 .

[39]  M. Madigan,et al.  Brock Biology of Microorganisms , 1996 .

[40]  U. Karsten GROWTH AND ORGANIC OSMOLYTES OF GEOGRAPHICALLY DIFFERENT ISOLATES OF MICROCOLEUS CHTHONOPLASTES (CYANOBACTERIA) FROM BENTHIC MICROBIAL MATS:RESPONSE TO SALINITY CHANGE 1 , 1996 .

[41]  H. Paerl Microscale physiological and ecological studies of aquatic cyanobacteria: Macroscale implications , 1996, Microscopy research and technique.

[42]  L. Stal Physiological ecology of cyanobacteria in microbial mats and other communities. , 1995, The New phytologist.

[43]  F. Garcia-Pichel,et al.  The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria , 1993, Experientia.

[44]  D. Canfield,et al.  Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat , 1993, Geochimica et cosmochimica acta.

[45]  S. Apte,et al.  Differential Responses of Nitrogen-Fixing Cyanobacteria to Salinity and Osmotic Stresses , 1993, Applied and environmental microbiology.

[46]  R. Castenholz,et al.  Evidence Regarding the UV Sunscreen Role of a Mycosporine-Like Compound in the Cyanobacterium Gloeocapsa sp , 1993, Applied and environmental microbiology.

[47]  N. Revsbech,et al.  PHOTOSYNTHESIS AND PHOTOSYNTHESIS‐COUPLED RESPIRATION IN NATURAL BIOFILMS QUANTIFIED WITH OXYGEN MICROSENSORS 1 , 1992 .

[48]  Y. Cohen,et al.  Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats , 1992, Applied and environmental microbiology.

[49]  D. Canfield,et al.  Aerobic sulfate reduction in microbial mats. , 1991, Science.

[50]  I. Davison ENVIRONMENTAL EFFECTS ON ALGAL PHOTOSYNTHESIS: TEMPERATURE , 1991 .

[51]  L N Csonka,et al.  Physiological and genetic responses of bacteria to osmotic stress. , 1989, Microbiological reviews.

[52]  J. Raven,et al.  Temperature and algal growth , 1988 .

[53]  A. Vonshak,et al.  The response of the filamentous cyanobacterium Spirulina platensis to salt stress , 1988, Archives of Microbiology.

[54]  David M. Ward,et al.  Photoexcretion and Fate of Glycolate in a Hot Spring Cyanobacterial Mat , 1988, Applied and environmental microbiology.

[55]  David M. Ward,et al.  Formation and Fate of Fermentation Products in Hot Spring Cyanobacterial Mats , 1987, Applied and environmental microbiology.

[56]  Paul G. Falkowski,et al.  Light-saturated photosynthesis — Limitation by electron transport or carbon fixation? , 1987 .

[57]  B. Jørgensen,et al.  Adaptation to Hydrogen Sulfide of Oxygenic and Anoxygenic Photosynthesis among Cyanobacteria , 1986, Applied and environmental microbiology.

[58]  B. Jørgensen,et al.  Transition from Anoxygenic to Oxygenic Photosynthesis in a Microcoleus chthonoplastes Cyanobacterial Mat , 1986, Applied and environmental microbiology.

[59]  W. Krumbein,et al.  Salinity and Water Activity Related Zonation of Microbial Communities and Potential Stromatolites of the Gavish Sabkha , 1985 .

[60]  B. Jørgensen,et al.  Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: Capabilities and limitations of the method1 , 1983 .

[61]  R. Norton,et al.  Marine blue-green algae have a unique osmoregulatory system , 1983 .

[62]  J. Schopf Stromatolites (Developments in Sedimentology, 20): M.R. Walter (Editor). Elsevier, Amsterdam, 1796, 790 pp., U.S. $99.95 or Dfl. 259.00 , 1978 .

[63]  R. Park The preservation potential of some recent stromatolites , 1977 .

[64]  T. D. Brock,et al.  ALGAL EXCRETION AND BACTERIAL ASSIMILATION IN HOT SPRING ALGAL MATS 1 , 1974 .

[65]  S. Golubić Three new species ofSchizothrix Kützing (Cyanophyta) from marine algal mats , 1973, Schweizerische Zeitschrift für Hydrologie.

[66]  M. Sarnthein Sediments and history of the Postglacial transgression in the Persian Gulf and northwest Gulf of Oman , 1972 .

[67]  C. Kendall,et al.  Holocene Shallow-Water Carbonate and Evaporite Sediments of Khor al Bazam, Abu Dhabi, Southwest Persian Gulf , 1969 .

[68]  C. Kendall,et al.  Recent Algal Mats of a Persian Gulf Lagoon , 1968 .

[69]  G. Evans A discussion concerning the floor of the northwest Indian Ocean - The recent sedimentary facies of the Persian Gulf region , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[70]  J. A. Hellebust,et al.  EXCRETION OF SOME ORGANIC COMPOUNDS BY MARINE PHYTOPLANKTON1 , 1965 .

[71]  Mercedes Berlanga,et al.  Brock Biology of microorganisms 12th edn. , 2008 .

[72]  C. Beierkuhnlein Barth, Hans-Jörg ; Böer, B. (Hrsg.): Sabkha Ecosystems. Vol. 1. The Arabian Peninsula and Adjacent Countries. Dordrecht, 2002 , 2004 .

[73]  D. D. Des Marais,et al.  Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats , 2004, Archives of Microbiology.

[74]  E. Galinski,et al.  Osmoadaptation in bacteria. , 1995, Advances in microbial physiology.

[75]  D. Canfield,et al.  Cycling of carbon, sulfur, oxygen and nutrients in a microbial mat , 1994 .

[76]  H. Paerl,et al.  Contemporaneous nitrogen fixation and denitrification in intertidal microbial mats: rapid response to runoff events , 1993 .

[77]  H. Paerl,et al.  Microscale characterization of dissolved organic matter production and uptake in marine microbial mat communities. , 1993, Limnology and oceanography.

[78]  J. William Schopf,et al.  The Proterozoic biosphere : a multidisciplinary study , 1992 .

[79]  R. Castenholz,et al.  The Family Chloroflexaceae , 1992 .

[80]  L. Margulis,et al.  Environmental evolution: Effects of the origin and evolution of life on Planet Earth , 1992 .

[81]  A. Decho,et al.  Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes , 1990 .

[82]  E. Rosenberg,et al.  Microbial mats : physiological ecology of benthic microbial communities , 1989 .

[83]  B. Volcani,et al.  Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis , 1989 .

[84]  W. Sackett Microbial mats: Stromatolites: Edited by Yehuda Cohen, Richard W. Castenholz and Harlyn O. Halvorson. Alan R. Liss, New York, 1984, 498 pp , 1985 .

[85]  E. Blumwald,et al.  Salt adaptation of the cyanobacterium synechococcus 6311 growing in a continuous culture (turbidostat). , 1984, Plant physiology.

[86]  T. Piatt,et al.  Temperature response of photosynthetic capacity and carboxylase activity in Arctic marine phytoplankton , 1984 .

[87]  R. Reed,et al.  Carbohydrate Accumulation and Osmotic Stress in Cyanobacteria , 1984 .

[88]  S. Golubić Chapter 4.1 Organisms that Build Stromatolites , 1976 .

[89]  D. Kinsman,et al.  Chapter 8.4 Algal Belt and Coastal Sabkha Evolution, Trucial Coast, Persian Gulf , 1976 .

[90]  D. Kinsman Recent carbonate sedimentation near Abu Dhabi, Trucial Coast, Persian Gulf , 1964 .

[91]  D. Kinsman The Recent Carbonate Sediments Near Halat El Bahrani, Trucial Coast, Persian Gulf , 1964 .