Storage ring probes of dark matter and dark energy

We show that proton storage ring experiments designed to search for proton electric dipole moments can also be used to look for the nearly dc spin precession induced by dark energy and ultra-light dark matter. These experiments are sensitive to both axion-like and vector fields. Current technology permits probes of these phenomena up to three orders of magnitude beyond astrophysical limits. The relativistic boost of the protons in these rings allows this scheme to have sensitivities comparable to atomic co-magnetometer experiments that can also probe similar phenomena. These complementary approaches can be used to extract the micro-physics of a signal, allowing us to distinguish between pseudo-scalar, magnetic and electric dipole moment interactions.

[1]  H. Janka,et al.  Muons in Supernovae: Implications for the Axion-Muon Coupling. , 2020, Physical review letters.

[2]  A. Matlashov,et al.  SQUID-based beam position monitor , 2019, Proceedings of The 39th International Conference on High Energy Physics — PoS(ICHEP2018).

[3]  P. Graham,et al.  Relaxation of the cosmological constant , 2019, Physical Review D.

[4]  Y. Semertzidis,et al.  Magnetic field effects on the proton EDM in a continuous all-electric storage ring , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[5]  Y. Semertzidis,et al.  Hybrid ring design in the storage-ring proton electric dipole moment experiment , 2018, Physical Review Accelerators and Beams.

[6]  T. Wagner Beam-based alignment tests at the Cooler Synchrotron (COSY) , 2018, Hyperfine Interactions.

[7]  J. Bernal,et al.  Hot axions and the H0 tension , 2018, Journal of Cosmology and Astroparticle Physics.

[8]  K. Hamaguchi,et al.  Limit on the axion decay constant from the cooling neutron star in Cassiopeia A , 2018, Physical Review D.

[9]  R. Essig,et al.  Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle , 2018, Journal of High Energy Physics.

[10]  L. Trahms,et al.  Spin Precession Experiments for Light Axionic Dark Matter , 2017, 1709.07852.

[11]  P. Graham,et al.  Born again universe , 2017, 1709.01999.

[12]  Y. Semertzidis,et al.  Systematic errors related to quadrupole misplacement in an all-electric storage ring for proton EDM experiment , 2017, 1709.01208.

[13]  W. Augustyniak,et al.  How to Reach a Thousand-Second in-Plane Polarization Lifetime with 0.97-GeV/c Deuterons in a Storage Ring. , 2016, Physical review letters.

[14]  Daniel Baumann,et al.  New Target for Cosmic Axion Searches. , 2016, Physical review letters.

[15]  A. Sedrakian Axion cooling of neutron stars , 2015, 1512.07828.

[16]  Y. H. Lee,et al.  A storage ring experiment to detect a proton electric dipole moment. , 2015, The Review of scientific instruments.

[17]  Y. Orlov Spin coherence time analytical estimations , 2015, 1506.02069.

[18]  Y. Orlov Confirmation of some formulas related to spin coherence time , 2015, 1504.07304.

[19]  E. Metodiev,et al.  Analytical benchmarks for precision particle tracking in electric and magnetic rings , 2015, 1503.02247.

[20]  W. Morse,et al.  Fringe electric fields of flat and cylindrical deflectors in electrostatic charged particle storage rings , 2014 .

[21]  Dmitry Budker,et al.  Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr) , 2013, 1306.6089.

[22]  P. Graham,et al.  New Observables for Direct Detection of Axion Dark Matter , 2013, 1306.6088.

[23]  C. Weidemann,et al.  Erratum: Synchrotron oscillation effects on an rf-solenoid spin resonance [Phys. Rev. ST Accel. Beams 15, 124202 (2012)] , 2013 .

[24]  David E. Kaplan,et al.  New light species and the CMB , 2013, 1303.5379.

[25]  M. Romalis,et al.  Laboratory search for a quintessence field , 2013, 1302.1579.

[26]  C. Weidemann,et al.  Synchrotron oscillation effects on an rf-solenoid spin resonance , 2012 .

[27]  Y. Semertzidis,et al.  Spin rotation by Earthʼs gravitational field in a “frozen-spin” ring , 2012, 1904.00339.

[28]  W. Morse,et al.  Correcting systematic errors in high-sensitivity deuteron polarization measurements , 2012 .

[29]  L. Trahms,et al.  Limit on Lorentz and CPT violation of the bound Neutron Using a Free Precession 3He/129Xe co-magnetometer , 2010, 1011.2143.

[30]  M. Romalis,et al.  New limit on Lorentz- and CPT-violating neutron spin interactions. , 2010, Physical review letters.

[31]  A. Ringwald,et al.  Constraints on a very light CP-odd Higgs of the NMSSM and other axion-like particles , 2010, 1005.3978.

[32]  M. Hare,et al.  Search for Lorentz and CPT violation effects in Muon spin precession. , 2007, Physical review letters.

[33]  A. Ferrari,et al.  AGS Proposal : Search for a permanent electric dipole moment of the deuteron nucleus at the 10 − 29 e · cm level , 2008 .

[34]  M. Romalis,et al.  Lorentz Invariance on Trial , 2004 .

[35]  W. Morse,et al.  New method of measuring electric dipole moments in storage rings. , 2003, Physical review letters.

[36]  P. Tenenbaum,et al.  Resolution and systematic limitations in beam-based alignment , 2000 .

[37]  V. Shiltsev,et al.  Ground vibration measurements for Fermilab future collider projects , 1998 .

[38]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[39]  G. Petrucci,et al.  Final report on the CERN muon storage ring including the anomalous magnetic moment and the electric dipole moment of the muon, and a direct test of relativistic time dilation , 1979 .