Structural Vibration Reduction by Switch Shunting of Piezoelectric Elements: Modeling and Optimization

This work deals with the reduction of structural vibrations by means of synchronized switch damping techniques on piezoelectric elements. Piezoelectric patches are attached to the vibrating structure and connected to an electrical circuit that includes a switch. The latter allows to continuously switch the piezoelectric elements from an open-circuit state to a specific electric impedance, synchronously with the mechanical oscillations. The present study focuses on two goals: (i) the quantification of the added damping, (ii) the optimization of the electric circuit parameters, carried out on a one degree of freedom model. The free and forced responses of one mode of the mechanical structure are studied in detail. The precise time response of the system is obtained with semi-analytical models for the two cases where the electrical impedance is a simple resistance (synchronized switch damping on short circuit) or a resistance in series with an inductance (synchronized switch damping on inductor). The damping added by the device is estimated. In all cases, the main result of the study is that the piezoelectric coupling factor is the only parameter to optimize and has to be maximized in order to maximize the added damping. An optimal value of the electric circuit quality factor is obtained when using an inductance, for free and forced response.

[1]  Kon Well Wang,et al.  An Energy-Based Parametric Control Approach for Structural Vibration Suppression via Semi-Active Piezoelectric Networks , 1996 .

[2]  Jean-François Deü,et al.  Atténuation des vibrations de structures complexes par shunt piézoélectrique-Application à un modèle simplifié d'aube de turbomachine , 2009 .

[3]  W. Clark Vibration Control with State-Switched Piezoelectric Materials , 2000 .

[4]  Daniel Guyomar,et al.  Sound Wave Transmission Reduction through a Plate using Piezoelectric Synchronized Switch Damping Technique , 2008 .

[5]  Adrien Badel,et al.  Nonlinear Semi-active Damping using Constant or Adaptive Voltage Sources: A Stability Analysis , 2008 .

[7]  Claude Richard,et al.  A broadband semi passive piezoelectric technique for structural damping , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[8]  Daniel Guyomar,et al.  Semi-passive damping using continuous switching of a piezoelectric device , 1999, Smart Structures.

[9]  G. Caruso A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping , 2001 .

[10]  F.dell'Isola,et al.  Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation , 2010 .

[11]  Ieee Standards Board IEEE Standard on Piezoelectricity , 1996 .

[12]  Jean-François Deü,et al.  Optimization of Shunted Piezoelectric Patches for Vibration Reduction of Complex Structures: Application to a Turbojet Fan Blade , 2010 .

[13]  Kenji Minesugi,et al.  Low-energy-consumption hybrid vibration suppression based on an energy-recycling approach , 2005 .

[14]  Claude Richard,et al.  Enhanced semi-passive damping using continuous switching of a piezoelectric device on an inductor , 2000, Smart Structures.

[15]  Jean-François Deü,et al.  Optimisation de dispositifs passifs d ’ atténuation de vibration par shunt piézoélectrique , 2007 .

[16]  George A. Lesieutre,et al.  Actively tuned solid state piezoelectric vibration absorber , 1998, Smart Structures.

[17]  Manfred Morari,et al.  An autonomous shunt circuit for vibration damping , 2006 .

[18]  William W. Clark,et al.  A Novel Semi-Active Multi-Modal Vibration Control Law for a Piezoceramic Actuator , 2003 .

[19]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[20]  Adrien Badel,et al.  Nonlinear semi-passive multimodal vibration damping: An efficient probabilistic approach , 2006 .

[21]  Adrien Badel,et al.  Semi-passive Piezoelectric Structural Damping by Synchronized Switching on Voltage Sources , 2006 .

[22]  Olivier Thomas,et al.  Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients , 2009 .

[23]  Kenji Minesugi,et al.  Energy-Recycling Semi-Active Method for Vibration Suppression with Piezoelectric Transducers , 2003 .

[24]  J. Ducarne,et al.  Modélisation et optimisation de dispositifs non-linéaires d'amortissement de structures par systèmes piézoélectriques commutés , 2009 .

[25]  Kanjuro Makihara,et al.  Performance of Simple and Sophisticated Control in Energy-recycling Semi-active Vibration Suppression , 2008 .

[26]  Claude Richard,et al.  Self-powered circuit for broadband, multimodal piezoelectric vibration control , 2008 .