Microporous SiO2 with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors

Electric-double-layer (EDL) effect is observed in microporous SiO2 dielectric films deposited at room temperature by plasma-enhanced chemical vapor deposition method. Indium tin oxide thin-film transistors gated by such microporous SiO2 gate dielectric are fabricated at room temperature, and a low operating voltage of 1.5 V is obtained due to the huge EDL specific capacitance (2.14 μF/cm2). The field-effect electron mobility is estimated to be 118 cm2 V−1 s−1. Current on/off ratio and subthreshold gate voltage swing are estimated to be 5×106 and 92 mV/decade, respectively. Room-temperature deposited microporous SiO2 dielectric is promising for low-power field-effect transistors on temperature sensitive substrates.

[1]  Horst Hahn,et al.  Appropriate choice of channel ratio in thin-film transistors for the exact determination of field-effect mobility , 2009 .

[2]  William J. Potscavage,et al.  Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition , 2009 .

[3]  H. Hoffmann Room-temperature growth of silicon oxide nanofilms: new opportunities for plastic electronics. , 2009, Angewandte Chemie.

[4]  Jungbae Kim,et al.  High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator , 2008 .

[5]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[6]  Matthew J. Panzer,et al.  Exploiting Ionic Coupling in Electronic Devices: Electrolyte‐Gated Organic Field‐Effect Transistors , 2008 .

[7]  Dong Hun Kim,et al.  Low voltage operating InGaZnO4 thin film transistors using high-k MgO–Ba0.6Sr0.4TiO3 composite gate dielectric on plastic substrate , 2008 .

[8]  Shimpei Ono,et al.  High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids , 2008 .

[9]  Yeon-Gon Mo,et al.  High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel , 2007 .

[10]  H. Klauk,et al.  Ultralow-power organic complementary circuits , 2007, Nature.

[11]  Alfredo Pasquarello,et al.  Proton diffusion mechanism in amorphous SiO2. , 2006, Physical review letters.

[12]  T. Kamiya,et al.  High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering , 2006 .

[13]  Ho-Gi Kim,et al.  Room temperature fabricated ZnO thin film transistor using high-K Bi1.5Zn1.0Nb1.5O7 gate insulator prepared by sputtering , 2006 .

[14]  Chung Kun Song,et al.  Low voltage pentacene thin film transistors employing a self-grown metal-oxide as a gate dielectric , 2006 .

[15]  Se Hyun Kim,et al.  Low-voltage pentacene field-effect transistors with ultrathin polymer gate dielectrics , 2006 .

[16]  Do Hwan Kim,et al.  Low-voltage polymer thin-film transistors with a self-assembled monolayer as the gate dielectric , 2005 .

[17]  R. Ishihara,et al.  Gate oxide induced switch-on undershoot current observed in thin-film transistors , 2005 .

[18]  Janos Veres,et al.  Gate Insulators in Organic Field-Effect Transistors , 2004 .

[19]  D. Avnir,et al.  Recommendations for the characterization of porous solids (Technical Report) , 1994 .

[20]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.