Generalizations of the Szemerédi–Trotter Theorem

[1]  Haim Kaplan,et al.  On Lines and Joints , 2009, Discret. Comput. Geom..

[2]  Csaba D. Tóth The Szemerédi-Trotter theorem in the complex plane , 2003, Comb..

[3]  S. Jukna The Polynomial Method , 2011 .

[4]  R. Baston,et al.  The Penrose Transform: Its Interaction with Representation Theory , 1990 .

[5]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[6]  József Solymosi,et al.  An Incidence Theorem in Higher Dimensions , 2012, Discret. Comput. Geom..

[7]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[8]  Joshua Zahl,et al.  A Szemerédi–Trotter Type Theorem in $$\mathbb {R}^4$$R4 , 2012, Discret. Comput. Geom..

[9]  Micha Sharir,et al.  Point–Line Incidences in Space , 2004, Combinatorics, Probability and Computing.

[10]  Larry Guth,et al.  Algebraic methods in discrete analogs of the Kakeya problem , 2008, 0812.1043.

[11]  J. Buczynski,et al.  Legendrian Subvarieties of Projective Space , 2006 .

[12]  Zeev Dvir,et al.  On the size of Kakeya sets in finite fields , 2008, 0803.2336.

[13]  R. Quilodran,et al.  The joints problem in R^n , 2009, 0906.0555.

[14]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[15]  Haim Kaplan,et al.  On lines, joints, and incidences in three dimensions , 2009, J. Comb. Theory, Ser. A.

[16]  M. D. Gosson,et al.  Symplectic Geometry and Quantum Mechanics , 2006 .

[17]  L. Guth,et al.  On the Erdős distinct distances problem in the plane , 2015 .

[18]  L. Guth Polynomial partitioning for a set of varieties , 2014, Mathematical Proceedings of the Cambridge Philosophical Society.