Generalizations of the Szemerédi–Trotter Theorem
暂无分享,去创建一个
Micha Sharir | Ben Yang | Noam Solomon | Saarik Kalia | M. Sharir | Noam Solomon | Saarik Kalia | Ben Yang
[1] Haim Kaplan,et al. On Lines and Joints , 2009, Discret. Comput. Geom..
[2] Csaba D. Tóth. The Szemerédi-Trotter theorem in the complex plane , 2003, Comb..
[3] S. Jukna. The Polynomial Method , 2011 .
[4] R. Baston,et al. The Penrose Transform: Its Interaction with Representation Theory , 1990 .
[5] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[6] József Solymosi,et al. An Incidence Theorem in Higher Dimensions , 2012, Discret. Comput. Geom..
[7] Leonidas J. Guibas,et al. Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..
[8] Joshua Zahl,et al. A Szemerédi–Trotter Type Theorem in $$\mathbb {R}^4$$R4 , 2012, Discret. Comput. Geom..
[9] Micha Sharir,et al. Point–Line Incidences in Space , 2004, Combinatorics, Probability and Computing.
[10] Larry Guth,et al. Algebraic methods in discrete analogs of the Kakeya problem , 2008, 0812.1043.
[11] J. Buczynski,et al. Legendrian Subvarieties of Projective Space , 2006 .
[12] Zeev Dvir,et al. On the size of Kakeya sets in finite fields , 2008, 0803.2336.
[13] R. Quilodran,et al. The joints problem in R^n , 2009, 0906.0555.
[14] Endre Szemerédi,et al. Extremal problems in discrete geometry , 1983, Comb..
[15] Haim Kaplan,et al. On lines, joints, and incidences in three dimensions , 2009, J. Comb. Theory, Ser. A.
[16] M. D. Gosson,et al. Symplectic Geometry and Quantum Mechanics , 2006 .
[17] L. Guth,et al. On the Erdős distinct distances problem in the plane , 2015 .
[18] L. Guth. Polynomial partitioning for a set of varieties , 2014, Mathematical Proceedings of the Cambridge Philosophical Society.