Enhanced electrochemical performance and stability of (La,Sr)MnO3-(Gd,Ce)O2 oxygen electrodes of solid oxide electrolysis cells by palladium infiltration

[1]  S. Jiang,et al.  Failure mechanism of (La,Sr)MnO 3 oxygen electrodes of solid oxide electrolysis cells , 2011 .

[2]  S. Jiang,et al.  Vacuum-assisted electroless copper plating on Ni/(Sm,Ce)O2 anodes for intermediate temperature solid oxide fuel cells , 2011 .

[3]  W. Zhou,et al.  Pd-YSZ composite cathodes for oxygen reduction reaction of intermediate-temperature solid oxide fuel cells , 2011 .

[4]  Kongfa Chen,et al.  Development of ( Gd , Ce ) O2-Impregnated ( La , Sr ) MnO3 Anodes of High Temperature Solid Oxide Electrolysis Cells , 2010 .

[5]  Chenghao Yang,et al.  Perovskite Sr2Fe1.5Mo0.5O6−δ as electrode materials for symmetrical solid oxide electrolysis cells , 2010 .

[6]  T. Ishihara,et al.  Steam Electrolysis Using LaGaO3 Based Perovskite Electrolyte for Recovery of Unused Heat Energy , 2010 .

[7]  C. Oh,et al.  Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell , 2010 .

[8]  Chenghao Yang,et al.  Characterization of infiltrated (La0.75Sr0.25)0.95MnO3 as oxygen electrode for solid oxide electrolysis cells , 2010 .

[9]  D. Brett,et al.  Performance of solid oxide electrolysis cells based on composite La0.8Sr0.2MnO3−δ – yttria stabilized zirconia and Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen electrodes , 2010 .

[10]  J. O’Brien,et al.  High-temperature electrolysis for large-scale hydrogen production from nuclear energy – Experimental investigations , 2010 .

[11]  Chenghao Yang,et al.  High temperature solid oxide electrolysis cell employing porous structured (La0.75Sr0.25)0.95MnO3 with enhanced oxygen electrode performance , 2010 .

[12]  J. Kilner,et al.  Performance and Characterization of (La, Sr)MnO3/YSZ and La0.6Sr0.4Co0.2Fe0.8O3 Electrodes for Solid Oxide Electrolysis Cells† , 2010 .

[13]  J. Bassat,et al.  A new anode material for solid oxide electrolyser: The neodymium nickelate Nd2NiO4+δ , 2010 .

[14]  S. Jiang,et al.  Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3−δ cathodes of solid oxide fuel cells , 2009 .

[15]  L. Jian,et al.  Mn‐Stabilised Microstructure and Performance of Pd‐impregnated YSZ Cathode for Intermediate Temperature Solid Oxide Fuel Cells , 2009 .

[16]  San Ping Jiang,et al.  Electrocatalytic Promotion of Palladium Nanoparticles on Hydrogen Oxidation on Ni/GDC Anodes of SOFCs via Spillover , 2009 .

[17]  Y. Zhai,et al.  Preparation of LSM–YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism , 2009 .

[18]  Marcio Gameiro,et al.  Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode , 2009 .

[19]  S. Jiang,et al.  High performance solid oxide fuel cells with electrocatalytically enhanced (La, Sr)MnO3 cathodes , 2009 .

[20]  Hanako Nishino,et al.  Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs , 2009 .

[21]  Carl M. Stoots,et al.  Syngas Production via High-Temperature Coelectrolysis of Steam and Carbon Dioxide , 2009 .

[22]  Jingming Xu,et al.  Synthesis and electrochemical properties of LSM and LSF perovskites as anode materials for high temperature steam electrolysis , 2009 .

[23]  Y. Bo,et al.  Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and its application for anode of SOEC , 2008 .

[24]  S. Jiang,et al.  Development of Nanostructured and Palladium Promoted (La,Sr)MnO3-Based Cathodes for Intermediate-Temperature SOFCs , 2008 .

[25]  T. He,et al.  Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells , 2008 .

[26]  M. Zahid,et al.  High temperature water electrolysis in solid oxide cells , 2008 .

[27]  T. He,et al.  Pd-Promoted La0.75Sr0.25Cr0.5Mn0.5O3 / YSZ Composite Anodes for Direct Utilization of Methane in SOFCs , 2008 .

[28]  Z. Lü,et al.  Novel in situ method (vacuum assisted electroless plating) modified porous cathode for solid oxide fuel cells , 2008 .

[29]  Zongping Shao,et al.  Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition , 2008 .

[30]  D. Leung,et al.  Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) , 2008 .

[31]  Tal Z. Sholklapper,et al.  Nanocomposite Ag–LSM solid oxide fuel cell electrodes , 2008 .

[32]  S. Jensen,et al.  Hydrogen and synthetic fuel production from renewable energy sources , 2007 .

[33]  G. Marbán,et al.  Towards the hydrogen economy , 2007 .

[34]  Kerry D. Meinhardt,et al.  Electrode Performance in Reversible Solid Oxide Fuel Cells , 2007 .

[35]  H. Zhong,et al.  High performance Pd promoted Sm0.5Sr0.5CoO3-La0.8Sr0.2Ga0.8Mg0.15Co0.05O3- δ composite cathodes for intermediate temperature solid oxide fuel cells , 2007 .

[36]  S. Jiang,et al.  Transition Behavior for O2 Reduction Reaction on ( La , Sr ) MnO3 ∕ YSZ Composite Cathodes of Solid Oxide Fuel Cells , 2006 .

[37]  J. Vohs,et al.  A Comparison of LSM, LSF, and LSCo for Solid Oxide Electrolyzer Anodes , 2006 .

[38]  Hiroyuki Uchida,et al.  Polarization Behavior of SDC Cathode with Highly Dispersed Ni Catalysts for Solid Oxide Electrolysis Cells , 2006 .

[39]  S. Jiang,et al.  A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells , 2006 .

[40]  M. Mogensen,et al.  Performance and Durability of Solid Oxide Electrolysis Cells , 2006 .

[41]  S. Jiang,et al.  Fabrication and Performance of GDC-Impregnated ( La , Sr ) MnO3 Cathodes for Intermediate Temperature Solid Oxide Fuel Cells , 2005 .

[42]  S. Jiang,et al.  Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells , 2005 .

[43]  S. Jiang,et al.  Sintering and grain growth of (La,Sr)MnO3 electrodes of solid oxide fuel cells under polarization , 2005 .

[44]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[45]  R. Hino,et al.  38. R&D on hydrogen production by high-temperature electrolysis of steam , 2004 .

[46]  S. Chan,et al.  Defect Chemistry of La1 − x Sr x MnO3 ± δ under Cathodic Polarization , 2004 .

[47]  F. Tietz,et al.  The influence of noble-metal-containing cathodes on the electrochemical performance of anode-supported SOFCs , 2004 .

[48]  S. Jiang,et al.  Effect of polarization on the electrode behavior and microstructure of (La,Sr)MnO3 electrodes of solid oxide fuel cells , 2004 .

[49]  E. P. Murray,et al.  (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells , 2001 .

[50]  Gerard Pajonk,et al.  Contribution of spillover effects to heterogeneous catalysis , 2000 .

[51]  D. Duprez,et al.  A model of oxygen transport in Pt/ceria catalysts from isotope exchange , 1999 .

[52]  J. Kilner,et al.  Pd-promoted La0.6Sr0.4Co0.2Fe0.8O3 cathodes , 1998 .

[53]  Tohru Kato,et al.  Polarization Behavior of High Temperature Solid Oxide Electrolysis Cells (SOEC) , 1997 .

[54]  K. Wippermann,et al.  Catalysis of the electrochemical processes on solid oxide fuel cell cathodes , 1996 .

[55]  J. Mccarty Kinetics of PdO combustion catalysis , 1995 .

[56]  Robert J. Farrauto,et al.  Thermal decomposition and reformation of PdO catalysts; support effects , 1995 .

[57]  B. Steele,et al.  Oxygen transport in selected nonstoichiometric perovskite-structure oxides , 1992 .

[58]  Robert J. Farrauto,et al.  Catalytic chemistry of supported palladium for combustion of methane , 1992 .

[59]  S. Jiang,et al.  Redox behavior of supported Pd particles and its effect on oxygen reduction reaction in intermediate temperature solid oxide fuel cells , 2011 .

[60]  Damon Honnery,et al.  Hydrogen's role in an uncertain energy future , 2009 .

[61]  T. He,et al.  Novel nano-structured Pd+yttrium doped ZrO2 cathodes for intermediate temperature solid oxide fuel cells , 2008 .

[62]  Jeffry W. Stevenson,et al.  Development of lanthanum ferrite SOFC cathodes , 2003 .

[63]  Maxim Lyubovsky,et al.  Complete methane oxidation over Pd catalyst supported on α-alumina. Influence of temperature and oxygen pressure on the catalyst activity , 1999 .

[64]  R. Streicher,et al.  Hydrogen production by high temperature electrolysis of water vapour , 1980 .