Linking Vanillas and VIX Options: A Constrained Martingale Optimal Transport Problem

VIX options traded on the CBOE have become popular volatility derivatives. As S&P 500 vanilla options and VIX both depend on S&P 500 volatility dynamics, it is important to understand the link between these products. In this paper, we bound VIX options from vanilla options and VIX futures. This leads us to introduce a new martingale optimal transportation problem that we solve numerically. Analytical lower and upper bounds are also provided which already highlight some (potential) arbitrage opportunities. We fully characterize the class of marginal distributions for which these explicit bounds are optimal, and illustrate numerically that they seem to be optimal for the market-implied marginal distributions.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Werner Hürlimann Extremal Moment Methods and Stochastic Orders.Application in Actuarial Science: Chapters IV, V and VI , 2008 .

[3]  R. McCann,et al.  Optimal transportation with capacity constraints , 2012, 1201.6404.

[4]  Pierre Henry-Labordere,et al.  Automated Option Pricing: Numerical Methods , 2011 .

[5]  Gustave Choquet Existence et unicité des représentations intégrales au moyen des points extrémaux dans les cônes convexes , 1958 .

[6]  H. Gerber,et al.  Some Inequalities for Stop-Loss Premiums , 1977, ASTIN Bulletin.

[7]  C. Villani Topics in Optimal Transportation , 2003 .

[8]  Rama Cont,et al.  A Consistent Pricing Model for Index Options and Volatility Derivatives , 2011 .

[9]  Bruno Dupire Pricing with a Smile , 1994 .

[10]  Gerhard Winkler,et al.  Extreme Points of Moment Sets , 1988, Math. Oper. Res..

[11]  A. Galichon,et al.  A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options , 2014, 1401.3921.

[12]  P. Spreij Probability and Measure , 1996 .

[13]  Artur Sepp VIX Option Pricing in a Jump-Diffusion Model , 2008 .

[14]  Guillaume Carlier,et al.  Optimal Transportation with Traffic Congestion and Wardrop Equilibria , 2006, SIAM J. Control. Optim..

[15]  M. Beiglböck,et al.  Model-independent bounds for option prices—a mass transport approach , 2011, Finance and Stochastics.

[16]  P. Henry-Labordère Calibration of Local Stochastic Volatility Models to Market Smiles: A Monte-Carlo Approach , 2009 .

[17]  H. Soner,et al.  Martingale optimal transport and robust hedging in continuous time , 2012, 1208.4922.

[18]  David Hobson,et al.  ROBUST BOUNDS FOR FORWARD START OPTIONS , 2012 .

[19]  F. De Vylder,et al.  Best upper bounds for integrals with respect to measures allowed to vary under conical and integral constraints , 1982 .

[20]  Bruno Bouchard,et al.  Stochastic Target Problems with Controlled Loss , 2009, SIAM J. Control. Optim..

[21]  Mark H. A. Davis Arbitrage Bounds for Weighted Variance Swap Prices , 2010 .

[22]  Mathias Beiglböck,et al.  Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.

[23]  R. Phelps Lectures on Choquet's Theorem , 1966 .

[24]  Jan Baldeaux,et al.  Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model , 2012, 1203.5903.

[25]  Marc Goovaerts,et al.  Upper bounds on stop-loss premiums in case of known moments up to the fourth order☆ , 1986 .

[26]  V. Strassen The Existence of Probability Measures with Given Marginals , 1965 .