Quantum Dot Parameters Determination From Quantum-Efficiency Measurements

The energy spectrum of the confined states of a quantum dot intermediate band (IB) solar cell is calculated with a simplified model. Two peaks are usually visible at the lowest energy side of the subbandgap quantum-efficiency spectrum in these solar cells. They can be attributed to photon absorption between well-defined states. As a consequence, the horizontal size of the quantum dots can be determined, and the conduction (valence) band offset is also determined if the valence (conduction) offset is known.

[1]  A. Zunger,et al.  Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells , 2008 .

[2]  Alexander A. Balandin,et al.  Intermediate-band solar cells based on quantum dot supracrystals , 2007 .

[3]  P. Harrison,et al.  Approximate methods for the solution of quantum wires and dots: Connection rules between pyramidal, cuboidal, and cubic dots , 1999 .

[4]  A. Luque,et al.  New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells , 2011 .

[5]  C. Pryor Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations , 1997, cond-mat/9710304.

[6]  A. Zunger,et al.  Coexistence and coupling of zero-dimensional, two-dimensional, and continuum resonances in nanostructures , 2009 .

[7]  Christopher G. Bailey,et al.  Effect of strain compensation on quantum dot enhanced GaAs solar cells , 2008 .

[8]  A. Luque,et al.  Virtual-bound, filamentary and layered states in a box-shaped quantum dot of square potential form the exact numerical solution of the effective mass Schrödinger equation , 2013 .

[9]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[10]  Yoshitaka Okada,et al.  Characteristics of InAs/GaNAs strain-compensated quantum dot solar cell , 2009 .

[11]  Antonio Luque,et al.  Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell , 2010 .

[12]  C. Stanley,et al.  General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence , 2004 .

[13]  A. Luque,et al.  Symmetry considerations in the empirical k.p Hamiltonian for the study of intermediate band solar cells , 2012 .

[14]  A. Luque,et al.  III-V compound semiconductor screening for implementing quantum dot intermediate band solar cells , 2011 .

[15]  Alexander A. Balandin,et al.  Miniband formation in a quantum dot crystal , 2001 .

[16]  Yoshitaka Okada,et al.  Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells , 2008 .

[17]  Diana L. Huffaker,et al.  Improved device performance of InAs∕GaAs quantum dot solar cells with GaP strain compensation layers , 2007 .

[18]  Nikolai N. Ledentsov,et al.  AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs , 2009 .

[19]  Christopher G. Bailey,et al.  Open-Circuit Voltage Improvement of InAs/GaAs Quantum-Dot Solar Cells Using Reduced InAs Coverage , 2011, IEEE Journal of Photovoltaics.

[20]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[21]  A. Luque,et al.  Quantum dot intermediate band solar cell , 2000 .

[22]  Antonio Luque López,et al.  Symmetry considerations in the empirical k.p Hamiltonian for the study of intermediate band solar cells , 2012 .

[23]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[24]  C. R. Stanley,et al.  InAs/AlGaAs quantum dot intermediate band solar cells with enlarged sub-bandgaps , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[25]  S. Tomić Electronic structure of InyGa1−yAs1−xNx∕GaAs(N) quantum dots by ten-band k∙p theory , 2006 .