L2-Stability Independent of Diffusion for a Finite Element-Finite Volume Discretization of a Linear Convection-Diffusion Equation
暂无分享,去创建一个
[1] Miloslav Feistauer,et al. Error Estimates for Barycentric Finite Volumes Combined with Nonconforming Finite Elements Applied to Nonlinear Convection-Diffusion Problems , 2002 .
[2] Erik Burman,et al. Finite element methods with symmetric stabilization for the transient convection―diffusion-reaction equation , 2009 .
[3] Zhitao Li. Convergence analysis of an upwind mixed element method for advection diffusion problems , 2009, Appl. Math. Comput..
[4] Marc Buffat,et al. An implicit mixed finite‐volume–finite‐element method for solving 3D turbulent compressible flows , 1997 .
[5] Aijie Cheng,et al. A uniformly optimal‐order estimate for finite volume method for advection‐diffusion equations , 2014 .
[6] Miloslav Feistauer,et al. Analysis of space–time discontinuous Galerkin method for nonlinear convection–diffusion problems , 2011, Numerische Mathematik.
[7] Regina Leal-Toledo,et al. Numerical analysis of a least-squares finite element method for the time-dependent advection-diffusion equation , 2011, J. Comput. Appl. Math..
[8] Martin Vohralík,et al. A combined finite volume–finite element scheme for the discretization of strongly nonlinear convection–diffusion–reaction problems on nonmatching grids , 2009 .
[9] Thierry Gallouët,et al. A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case , 2007, Math. Comput..
[10] Riccardo Sacco,et al. Stabilized Mixed Finite Volume Methods for Convection-Diffusion Problems , 1997 .
[11] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[12] Martin Vohralík,et al. A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems , 2006, Numerische Mathematik.
[13] Philippe Angot,et al. Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems , 1998 .
[14] Gabriel R. Barrenechea,et al. A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations , 2012 .
[15] Todd Arbogast,et al. A Nonlinear Mixed Finite Eelement Method for a Degenerate Parabolic Equation Arising in Flow in Porous Media , 1996 .
[16] Marcus Mildner,et al. Stabilité de l'équation d'advection-diffusion et stabilité de l'équation d'advection pour la solution du problème approché, obtenue par la méthode upwind d'éléments-finis et de volumes-finis avec des éléments de Crouzeix-Raviart , 2013 .
[17] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[18] Paul Deuring,et al. Stability of a combined finite element ‐ finite volume discretization of convection‐diffusion equations , 2012 .
[19] Miloslav Feistauer,et al. On the convergence of a combined finite volume–finite element method for nonlinear convection–diffusion problems. Explicit schemes , 1999 .
[20] Rüdiger Verfürth,et al. Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..
[21] Thierry Gallouët,et al. Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh , 1993 .
[22] Petr Knobloch. UNIFORM VALIDITY OF DISCRETE FRIEDRICHS' INEQUALITY FOR GENERAL NONCONFORMING FINITE ELEMENT SPACES , 2001 .
[23] A. Serghini Mounim,et al. A stabilized finite element method for convection–diffusion problems , 2012 .
[24] Blanca Ayuso de Dios,et al. Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems , 2009, SIAM J. Numer. Anal..
[25] M. Lukáčová-Medvid'ová,et al. On the Convergence of a Combined Finite Volume{Finite Element Method for Nonlinear Convection{Diffusion Problems , 1997 .
[26] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[27] Katsushi Ohmori,et al. A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations , 1984 .
[28] Giancarlo Sangalli,et al. Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems , 2006, SIAM J. Numer. Anal..
[29] Thierry Gallouët,et al. A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case , 2009, Math. Comput..
[30] P. Causin,et al. FLUX-UPWIND STABILIZATION OF THE DISCONTINUOUS PETROV-GALERKIN FORMULATION WITH LAGRANGE MULTIPLIERS FOR ADVECTION-DIFFUSION PROBLEMS ∗ , 2005 .
[31] Alain Dervieux,et al. Computation of unsteady flows with mixed finite volume/finite element upwind methods , 1998 .
[32] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[33] Susanne C. Brenner,et al. Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..
[34] M. Vohralík. On the Discrete Poincaré–Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1 , 2005 .
[35] Paul Deuring,et al. Error estimates for a finite element-finite volume discretization of convection-diffusion equations , 2011 .
[36] Po-Wen Hsieh,et al. On efficient least-squares finite element methods for convection-dominated problems , 2009 .
[37] Sabine Fenstermacher,et al. Numerical Approximation Of Partial Differential Equations , 2016 .
[38] Douglas Enright,et al. Mathematical and computational methods for compressible flow , 2005, Math. Comput..
[39] Gerald Warnecke,et al. Error Estimates for a Combined Finite Volume--Finite Element Method for Nonlinear Convection--Diffusion Problems , 1999 .
[40] L. Tobiska,et al. A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation , 1989 .
[41] Miloslav Feistauer,et al. Mathematical Methods in Fluid Dynamics , 1993 .
[42] Vít Dolejší,et al. On the Discrete Friedrichs Inequality for Nonconforming Finite Elements , 1999 .
[43] Anders Szepessy,et al. Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions , 1991 .