Thermodynamic modelling of C O H fluids

H2O, CO2, CH4, CO, H2 and O2 are the most important species in crustal fluids. The composition of these C–O–H fluids can be calculated if the pressure, temperature, carbon activity, and either the oxygen fugacity or the atomic H/O ratio of the fluid is known. The calculation methods are discussed and calculation results are illustrated with isobaric T–Xi, P–T, and isobaric–isothermal ternary C–O–H diagrams. Fluid inclusion compositions, in particular, the XCO2/(XCO2+XCH4) ratio, can be used for C–O–H model calculations. However, care should be taken about possible post-entrapment changes, which may have modified the chemical composition of the fluid inclusion.

[1]  R. Bodnar,et al.  Synthetic fluid inclusions; X, Experimental determination of P-V-T-X properties in the CO 2 -H 2 O system to 6 kb and 700 degrees C , 1991 .

[2]  R. C. Newton,et al.  H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium , 1996 .

[3]  T. Labotka Chemical and physical properties of fluids , 1991 .

[4]  B. Cesare Graphite precipitation in C—O—H fluid inclusions: closed system compositional and density changes, and thermobarometric implications , 1995 .

[5]  H. Helgeson,et al.  Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures , 1983 .

[6]  D. Crerar,et al.  Thermodynamics in Geochemistry: The Equilibrium Model , 1993 .

[7]  J. Dubessy Simulation des équilibres chimiques dans le système C-O-H. Conséquences méthodologiques pour les inclusions fluides , 1984 .

[8]  N. Chatterjee Applied Mineralogical Thermodynamics , 1991 .

[9]  I. Chou,et al.  Re-equilibration of CO2fluid inclusions at controlled hydrogen fugacities , 1993 .

[10]  H. R. Shaw,et al.  Fugacity coefficients for hydrogen gas between O degrees and 1000 degrees C, for pressures to 3000 atm , 1964 .

[11]  Surendra K. Saxena,et al.  A molecular dynamics study of the pressure-volume-temperature properties of super-critical fluids: I. H2O , 1991 .

[12]  S. Saxena,et al.  High pressure and high temperature fluid fugacities , 1987 .

[13]  Wolfgang Wagner,et al.  A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25 000 MPa , 1989 .

[14]  H. Eugster,et al.  Thermodynamic modeling of geological materials : minerals, fluids and melts , 1987 .

[15]  H. Helgeson,et al.  Equilibrium and mass transfer during progressive metamorphism of siliceous dolomites , 1983 .

[16]  B. French Some geological implications of equilibrium between graphite and a C‐H‐O gas phase at high temperatures and pressures , 1966 .

[17]  W. Lustenhouwer,et al.  The application of a multichannel laser Raman microprobe (Microdil-28®) to the analysis of fluid inclusions , 1987 .

[18]  O. Redlich,et al.  On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions. , 1949, Chemical reviews.

[19]  R. Bakker,et al.  Preferential water leakage from fluid inclusions by means of mobile dislocations , 1990, Nature.

[20]  J. Connolly,et al.  C‐O‐H‐S fluid composition and oxygen fugacity in graphitic metapelites , 1993 .

[21]  F. Spear Metamorphic phase equilibria and pressure-temperature-time paths , 1993 .

[22]  J. Holloway Graphite-CH4-H2O-CO2 equilibria at low-grade metamorphic conditions , 1984 .

[23]  J. Huizenga,et al.  FLUID INCLUSIONS IN SHEAR ZONES : THE CASE OF THE UMWINDSI SHEAR ZONE IN THE HARARE-SHAMVA-BINDURA GREENSTONE BELT, NE ZIMBABWE , 1999 .

[24]  B. R. Frost Mineral equilibria involving mixed-volatiles in a C-O-H fluid phase; the stabilities of graphite and siderite , 1979 .

[25]  R. Bakker,et al.  Calculated fluid evolution path versus fluid inclusion data in the COHN system as exemplified by metamorphic rocks from Rogaland, south‐west Norway , 1993 .

[26]  A. V. D. Kerkhof,et al.  The system CO2-CH4-N2 in fluid inclusions: theoretical modelling and geological applications , 1988 .

[27]  L. Hollister Enrichment of CO2 in fluid inclusions in quartz by removal of H2O during crystal-plastic deformation , 1990 .

[28]  H. Ohmoto,et al.  Devolatilization equilibria in graphitic systems , 1977 .

[29]  J. Ferry,et al.  Thermodynamic models of molecular fluids at the elevated pressures and temperatures of crustal metamorphism , 1987 .

[30]  J. S. Huebner,et al.  Buffering Techniques for Hydrostatic Systems at Elevated Pressures , 1971 .

[31]  S. Sterner,et al.  Preferential water loss from synthetic fluid inclusions , 1993 .

[32]  S. Saxena,et al.  A unified equation of state for fluids of C-H-O-N-S-Ar composition and their mixtures up to very high temperatures and pressures , 1992 .

[33]  J. Connolly Phase diagram methods for graphitic rocks and application to the system C−O−H−FeO−TiO2−SiO2 , 1995 .

[34]  D. Marshall,et al.  The metamorphism of granulites and devolatilization of the lithosphere , 1991 .

[35]  Rune B. Larsen,et al.  “GEOFLUID”: a FORTRAN 77 program to compute chemical properties of gas species in C-O-H fluids , 1993 .

[36]  D. R. Stull JANAF thermochemical tables , 1966 .

[37]  S. Hagemann,et al.  Interpretation of post-entrapment fluid-inclusion re-equilibration at the Three Mile Hill, Marvel Loch and Griffins Find high-temperature lode-gold deposits, Yilgarn Craton, Western Australia , 1999 .

[38]  W. Lamb,et al.  C-O-H Fluid Calculations and Granulite Genesis , 1985 .

[39]  S. Saxena,et al.  Fluids at crustal pressures and temperatures , 1987 .

[40]  S. K. Saxena,et al.  Thermodynamic modeing of the C-H-O-S fluid system , 1992 .

[41]  R. Bakker,et al.  A mechanism for preferential H2O leakage from fluid inclusions in quartz, based on TEM observations , 1994 .

[42]  John R. Holloway,et al.  Fugacity and Activity of Molecular Species in Supercritical Fluids , 1977 .

[43]  A. V. D. Kerkhof,et al.  Retrograde methane-dominated fluid inclusions from high-temperature granulites of Rogaland, southwestern Norway , 1991 .

[44]  R. Bakker Adaptation of the Bowers and Helgeson (1983) equation of state to the H2O–CO2–CH4–N2–NaCl system , 1999 .

[45]  W. Glassley Fluid evolution and graphite genesis in the deep continental crust , 1982, Nature.

[46]  P. Cordier,et al.  Influence of dislocations on water leakage from fluid inclusions in quartz: a quantitative reappraisal , 1994 .

[47]  R. Bodnar,et al.  HYDROGEN MOVEMENT INTO AND OUT OF FLUID INCLUSIONS IN QUARTZ : EXPERIMENTAL EVIDENCE AND GEOLOGIC IMPLICATIONS , 1994 .

[48]  J. Connolly Multivariable phase diagrams; an algorithm based on generalized thermodynamics , 1990 .

[49]  R. Bodnar,et al.  Methane in fluid inclusions from granulites: A product of hydrogen diffusion?☆ , 1990 .

[50]  D. Kerrick,et al.  Methane: An equation of state with application to the ternary system H2O-CO2-CH4 , 1981 .

[51]  J. Dubessy,et al.  The P-V̄-T-X-f O2 evolution of H2O-CO2-CH4-bearing fluid in a wolframite vein: Reconstruction from fluid inclusion studies , 1985 .

[52]  M. Frezzotti,et al.  Evidence of magmatic CO2-rich fluids in peraluminous graphite-bearing leucogranites from Deep Freeze Range (northern Victoria Land, Antarctica) , 1994 .

[53]  S. Saxena,et al.  SUPERFLUID: a FORTRAN-77 program for calculation of Gibbs free energy and volume of C-H-O-N-S-Ar mixtures , 1992 .

[54]  R. Kreulen Thermodynamic calculations of the COH system applied to fluid inclusions: Are fluid inclusions unbiassed samples of ancient fluids? , 1987 .

[55]  H. Keppler,et al.  Compositional re-equilibration of fluid inclusions in quartz , 1995 .

[56]  S. Saxena,et al.  A molecular dynamics study of the pressure-volume-temperature properties of supercritical fluids: II. CO2, CH4, CO, O2, and H2 , 1991 .

[57]  H. Holland Some applications of thermochemical data to problems of ore deposits; [Part] 2, Mineral assemblages and the composition of ore forming fluids , 1965 .

[58]  J. Pasteris,et al.  Structural characterization of kerogens to granulite-facies graphite; applicability of Raman microprobe spectroscopy , 1993 .

[59]  R. Bodnar,et al.  Evidence for postentrapment diffusion of hydrogen into peak metamorphic fluid inclusions from the massive sulfide deposits at Ducktown, Tennessee , 1991 .

[60]  A. Tobi,et al.  The Deep Proterozoic crust in the North Atlantic provinces , 1985 .