Local minima for indefinite quadratic knapsack problems

We consider the complexity of finding a local minimum for the nonconvex Quadratic Knapsack Problem. Global minimization for this example of quadratic programming is NP-hard. Moré and Vavasis have investigated the complexity of local minimization for the strictly concave case of QKP; here we extend their algorithm to the general indefinite case. Our main result is an algorithm that computes a local minimum in O(n(logn)2) steps. Our approach involves eliminating all but one of the convex variables through parametrization, yielding a nondifferentiable problem. We use a technique from computational geometry to address the nondifferentiable problem.

[1]  Philip E. Gill,et al.  Practical optimization , 1981 .

[2]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[3]  Panos M. Pardalos,et al.  An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds , 1990, Math. Program..

[4]  Jorge J. Moré,et al.  On the solution of concave knapsack problems , 1990, Math. Program..

[5]  Mihalis Yannakakis,et al.  Simple Local Search Problems That are Hard to Solve , 1991, SIAM J. Comput..

[6]  Arnoldo C. Hax,et al.  Disaggregation and Resource Allocation Using Convex Knapsack Problems with Bounded Variables , 1981 .

[7]  C. Panne Methods for Linear and Quadratic Programming , 1975 .

[8]  Y. Ye,et al.  Algorithms for the solution of quadratic knapsack problems , 1991 .

[9]  R. Fletcher Practical Methods of Optimization , 1988 .

[10]  Mark W. Krentel On finding locally optimal solutions , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[11]  Sartaj Sahni,et al.  Computationally Related Problems , 1974, SIAM J. Comput..

[12]  R. Cottle,et al.  A Lagrangean relaxation algorithm for the constrained matrix problem , 1986 .

[13]  P. Brucker Review of recent development: An O( n) algorithm for quadratic knapsack problems , 1984 .

[14]  G. R. Walsh,et al.  Methods Of Optimization , 1976 .

[15]  Panos M. Pardalos,et al.  A branch and bound algorithm for the maximum clique problem , 1992, Comput. Oper. Res..

[16]  Leonidas J. Guibas,et al.  Visibility and intersectin problems in plane geometry , 1985, SCG '85.

[17]  Jie Sun Tracing the characteristic curve of a quadratic black box , 1989, Networks.

[18]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[19]  J. J. Moré,et al.  Quasi-Newton updates with bounds , 1987 .

[20]  Jeffery L. Kennington,et al.  A polynomially bounded algorithm for a singly constrained quadratic program , 1980, Math. Program..

[21]  H. Markowitz The optimization of a quadratic function subject to linear constraints , 1956 .