Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure

We report on the breakdown voltages in InP/InGaAs avalanche photodiode (APD) experimentally and theoretically, based on the parameters of electric field distribution, carrier concentrations, thicknesses, and temperatures. According to the calculation, the breakdown voltage has its minimum point, w0, at each carrier concentration in charge plate and avalanche photodiode with very thin multiplication layer width will provide high gain bandwidth product. The devices having different multiplication layer width showed different breakdown voltages and temperature behaviors. We introduced newly defined temperature coefficient, γ, and found that γ’s are linearly dependent on breakdown voltages at each temperature. From these results, the empirical formula which effectively describes the temperature dependence of breakdown voltages was obtained.

[1]  High sensitivity of VPE-grown InGaAs/InP-heterostructure APD with buffer layer and guard-ring structure , 1984 .

[2]  C. R. Crowell,et al.  Temperature dependence of avalanche multiplication in semiconductors , 1966 .

[3]  T. Baird,et al.  High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes , 1993, IEEE Photonics Technology Letters.

[4]  Y. Liu,et al.  In/sub 0.53/Ga/sub 0.47/As/InP floating guard ring avalanche photodiodes fabricated by double diffusion , 1990, IEEE Photonics Technology Letters.

[5]  Joe C. Campbell,et al.  High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy , 1988 .

[6]  S. Forrest,et al.  Performance of In 0.53 Ga 0.47 As/InP avalanche photodiodes , 1982 .

[7]  Kyung-Sook Hyun,et al.  Effect of multiplication layer width on breakdown voltage in InP/InGaAs avalanche photodiode , 1995 .

[8]  W. Tsang,et al.  InP/InGaAsP/InGaAs SAGM avalanche photodiode with delta-doped multiplication region , 1991 .

[9]  V. D. Mattera,et al.  High Frequency Performance Of Planar InGaAs/InP Avalanche Photodiodes , 1989, Other Conferences.

[10]  M. J. Deen,et al.  Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes , 1995 .

[11]  Yong-hee Lee,et al.  High-performance InGaAs/InP avalanche photodiode for a 2.5 Gb s-1 optical receiver , 1995 .

[12]  K. Hyun,et al.  Temperature Dependent Breakdown Characteristics in InP/InGaAs Avalanche Photodiodes , 1996 .

[13]  G. E. Stillman,et al.  Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements , 1982 .

[14]  M. Kawashima,et al.  Required Donor Concentration of Epitaxial Layers for Efficient InGaAsP Avalanche Photodiodes , 1980 .

[15]  F. W. Ostermayer,et al.  Planar InP/InGaAsP three-dimensional graded-junction avalanche photodiode , 1987, IEEE Transactions on Electron Devices.

[16]  Takao Kaneda,et al.  Tunneling Current in InGaAs and Optimum Design for InGaAs/InP Avalanche Photodiode , 1980 .

[17]  D. G. Knight,et al.  Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery , 1990 .

[18]  Yuichi Kawamura,et al.  InGaAsP-InA1As Superlattice Avalanche Photodiode , 1992 .