Characterization of supramolecular polymers.

Supramolecular polymers are made of monomers that are held together by noncovalent interactions. This is the reason for the wide range of novel properties, such as reversibility and responses to stimuli, exhibited by supramolecular polymers. A range of supramolecular polymerization methods have been developed leading to a number of novel supramolecular materials. However, standard techniques for the characterization of supramolecular polymers have yet to be established. The dynamic nature of supramolecular polymers makes them difficult to be fully characterized using conventional polymer techniques. This tutorial review summarizes various methods for characterizing supramolecular polymers, including theoretical estimation, size exclusion chromatography, viscometry, light scattering, vapor pressure osmometry, mass spectrometry, NMR spectroscopy, scanning probe microscopy, electron microscopy, and atomic force microscopy-based single molecule force spectroscopy. Each of these methods has its own particular advantages and disadvantages. Most of the methods are used to characterize the supramolecular polymer chain itself. However, some of the methods can be used to study the self-assembled state formed by supramolecular polymers. The characterization of a supramolecular polymer cannot be realized with a single method; a convincing conclusion relies on the combination of several different techniques.

[1]  Xia Ding,et al.  A Multiresponsive, Shape‐Persistent, and Elastic Supramolecular Polymer Network Gel Constructed by Orthogonal Self‐Assembly , 2012, Advanced materials.

[2]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[3]  H. Gaub,et al.  Analysis of Metallo‐Supramolecular Systems Using Single‐Molecule Force Spectroscopy , 2003 .

[4]  H. Gibson,et al.  Supramolecular pseudorotaxane polymers from complementary pairs of homoditopic molecules. , 2003, Journal of the American Chemical Society.

[5]  Feihe Huang,et al.  Formation of a supramolecular hyperbranched polymer from self-organization of an AB2 monomer containing a crown ether and two paraquat moieties. , 2004, Journal of the American Chemical Society.

[6]  E. W. Meijer,et al.  Photoinitiated polymerization of columnar stacks of self-assembled trialkyl-1,3,5-benzenetricarboxamide derivatives. , 2003, Journal of the American Chemical Society.

[7]  Kai Liu,et al.  Host-enhanced π-π interaction for water-soluble supramolecular polymerization. , 2011, Chemistry.

[8]  S. Kuwabata,et al.  Photocurrent generation from hierarchical zinc-substituted hemoprotein assemblies immobilized on a gold electrode. , 2012, Angewandte Chemie.

[9]  Y. Takashima,et al.  Supramolecular Polymers Formed from β-Cyclodextrins Dimer Linked by Poly(ethylene glycol) and Guest Dimers , 2005 .

[10]  Justin R. Kumpfer,et al.  Optically healable supramolecular polymers , 2011, Nature.

[11]  David E Reichert,et al.  Self-Assembling Dendrimers , 1996, Science.

[12]  Akira Harada,et al.  Cyclodextrin-based supramolecular polymers. , 2009, Chemical Society reviews.

[13]  Y. Takashima,et al.  Chiral supramolecular polymers formed by host-guest interactions. , 2005, Journal of the American Chemical Society.

[14]  W. Knoben,et al.  Chain stoppers in reversible supramolecular polymer solutions studied by static and dynamic light scattering and osmometry , 2006 .

[15]  E. W. Meijer,et al.  Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. , 1997, Science.

[16]  F. Würthner,et al.  Hydrogen-Bond-Directed Formation of Supramolecular Polymers Incorporating Head-to-Tail Oriented Dipolar Merocyanine Dyes , 2011 .

[17]  Y. Takashima,et al.  Preparation of Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules: Control of Structure by Linker Flexibility , 2005 .

[18]  J. F. Stoddart,et al.  Acid-base actuation of [c2]daisy chains. , 2009, Journal of the American Chemical Society.

[19]  P. Marszalek,et al.  Surface-to-surface bridges formed by reversibly assembled polymers. , 2004, Journal of the American Chemical Society.

[20]  Y. Ko,et al.  Growth of poly(pseudorotaxane) on gold using host-stabilized charge-transfer interaction. , 2004, Chemical communications.

[21]  Y. Cohen,et al.  Anion-assisted supramolecular polymerization: from achiral AB-type monomers to chiral assemblies. , 2011, Angewandte Chemie.

[22]  E. W. Meijer,et al.  Chiral amplification in the transcription of supramolecular helicity into a polymer backbone. , 2005, Angewandte Chemie.

[23]  L. Bouteiller Assembly via Hydrogen Bonds of Low Molar Mass Compounds into Supramolecular Polymers , 2007 .

[24]  J. Bantignies,et al.  A better understanding of the self-structuration of bridged silsesquioxanes. , 2004, Angewandte Chemie.

[25]  U. Diebold,et al.  Straightforward self-assembly of porphyrin nanowires in water: harnessing adamantane/beta-cyclodextrin interactions. , 2010, Journal of the American Chemical Society.

[26]  D. Qu,et al.  Construction of Polypseudorotaxane from Low-Molecular Weight Monomers via Dual Noncovalent Interactions , 2011 .

[27]  Jean-Marie Lehn,et al.  Supramolecular polymer chemistry—scope and perspectives†‡ , 2002 .

[28]  S. Craig,et al.  Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. , 2006, Journal of the American Chemical Society.

[29]  Xi Zhang,et al.  Metal-ligand coordination-induced self-assembly of bolaamphiphiles bearing bipyrimidine. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[30]  Yiheng Zhang,et al.  DIRECT MEASUREMENTS OF INTERMOLECULAR INTERACTIONS: DIRECT MEASUREMENTS OF INTERMOLECULAR INTERACTIONS , 2009 .

[31]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[32]  Yajie Zhang,et al.  Formation of polypseudorotaxane networks by cross-linking the quadruple hydrogen bonded linear supramolecular polymers via bisparaquat molecules. , 2011, Chemical communications.

[33]  E. W. Meijer,et al.  A selectivity-driven supramolecular polymerization of an AB monomer. , 2006, Angewandte Chemie.

[34]  E. W. Meijer,et al.  Materials science: Supramolecular polymers , 2008, Nature.

[35]  Bo Zheng,et al.  Supramolecular polymers constructed by crown ether-based molecular recognition. , 2012, Chemical Society reviews.

[36]  H. Yamaguchi,et al.  A [2]rotaxane capped by a cyclodextrin and a guest: formation of supramolecular [2]rotaxane polymer. , 2005, Journal of the American Chemical Society.

[37]  O. Scherman,et al.  Probing cucurbit[8]uril-mediated supramolecular block copolymer assembly in water using diffusion NMR , 2010 .

[38]  Feihe Huang,et al.  Supramolecular polymer nanofibers via electrospinning of a heteroditopic monomer. , 2011, Chemical communications.

[39]  Yan-Li Zhao,et al.  Bundle-shaped cyclodextrin-Tb nano-supramolecular assembly mediated by C60: intramolecular energy transfer. , 2006, Nano letters.

[40]  L. Bouteiller,et al.  Supramolecular association of acid terminated polydimethylsiloxanes. 3. Viscosimetric study , 2001 .

[41]  L. Isaacs,et al.  Toward supramolecular polymers incorporating double cavity cucurbituril hosts , 2009 .

[42]  C. Böttcher,et al.  Switchable supramolecular polymers from the self-assembly of a small monomer with two orthogonal binding interactions. , 2011, Journal of the American Chemical Society.

[43]  Feihe Huang,et al.  Preparation of a Daisy Chain via Threading-Followed-by-Polymerization , 2011 .

[44]  Toshiaki Ikeda,et al.  Supramolecular polymerization triggered by molecular recognition between bisporphyrin and trinitrofluorenone. , 2012, Angewandte Chemie.

[45]  M. Weck,et al.  Supramolecular alternating block copolymers via metal coordination. , 2009, Chemistry.

[46]  L. Bouteiller,et al.  Chain Stopper-Assisted Characterization of Supramolecular Polymers , 2005 .

[47]  J. Lehn,et al.  Molecular recognition directed self‐assembly of supramolecular liquid crystalline polymers from complementary chiral components , 1990 .

[48]  Xi Zhang,et al.  Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions. , 2010, Angewandte Chemie.

[49]  Feihe Huang,et al.  A supramolecular poly[3]pseudorotaxane by self-assembly of a homoditopic cylindrical bis(crown ether) host and a bisparaquat derivative. , 2005, Chemical communications.

[50]  P. Thordarson Determining association constants from titration experiments in supramolecular chemistry. , 2011, Chemical Society reviews.

[51]  U. Schubert,et al.  Supramolecular ABA triblock copolymers via a polycondensation approach : synthesis characterization, and micelle formation , 2006 .

[52]  E. W. Meijer,et al.  Photo-induced depolymerization of reversible supramolecular polymers , 1998 .

[53]  R. Sijbesma,et al.  A high molecular weight reversible coordination polymer of PdCl2 and 1,12-bis(diphenylphosphino)dodecaneElectronic supplementary information (ESI) available: experimental details, SEC results and NMR spectra. See http://www.rsc.org/suppdata/cc/b3/b301874a/ , 2003 .

[54]  Xi Zhang,et al.  Force spectroscopy of polymers: Studying on intramolecular and intermolecular interactions in single molecular level , 2008 .

[55]  Feihe Huang,et al.  Formation of linear main-chain polypseudorotaxanes with supramolecular polymer backbones via two self-sorting host-guest recognition motifs. , 2009, Chemical communications.

[56]  Feihe Huang,et al.  Supramolecular AA-BB-type linear polymers with relatively high molecular weights via the self-assembly of bis(m-phenylene)-32-crown-10 cryptands and a bisparaquat derivative. , 2011, Journal of the American Chemical Society.

[57]  Feihe Huang,et al.  Formation of a Linear Supramolecular Polymer by Self-Assembly of Two Homoditopic Monomers Based on the Bis(m-phenylene)-32-crown-10/Paraquat Recognition Motif , 2007 .

[58]  Wenke Zhang,et al.  Single molecule mechanochemistry of macromolecules , 2003 .

[59]  K. Ogawa,et al.  Formation of a Giant Supramolecular Porphyrin Array by Self-Coordination This work was supported by Grant-in-Aids for Scientific Research (Nos. 10129210 and 11133240, "Creation of Characteristic Delocalized Electronic Systems", to Y.K.) from the Ministry of Education, Science, Sports, and Culture of , 2000, Angewandte Chemie.

[60]  M. Weck,et al.  Main-chain supramolecular block copolymers. , 2011, Chemical Society reviews.

[61]  R. B. Martin,et al.  Comparisons of Indefinite Self-Association Models. , 1996, Chemical reviews.

[62]  H. Schönherr,et al.  Stretching and rupturing individual supramolecular polymer chains by AFM. , 2005, Angewandte Chemie.

[63]  E. W. Meijer,et al.  Unexpected entropy-driven ring-opening polymerization in a reversible supramolecular system. , 2001, Journal of the American Chemical Society.

[64]  Zhan-Ting Li,et al.  Highly stable chiral (A)6-B supramolecular copolymers: a multivalency-based self-assembly process. , 2011, Journal of the American Chemical Society.

[65]  S. Rowan,et al.  Supramolecular Polymerizations and Main-Chain Supramolecular Polymers , 2009 .