Tried-and-true binary strategy for angular displacement estimation based upon fidelity appraisal.

We demonstrate a tried-and-true binary strategy for angular displacement estimation, of which the measuring system is a modified Mach-Zehnder interferometer fed by a coherent state carrying orbital angular momentum, and two Dove prisms are embedded in two arms. Unlike previous protocols, in this paper, we use fidelity instead of standard deviation to evaluate the detection strategies. Two binary strategy candidates, parity detection and Z detection, are considered and compared. In addition, we study the effects of several realistic scenarios on the estimation protocol, including transmission loss, detection efficiency, dark counts, and those which are a combination thereof. Finally, we exhibit a proof-of-principle experiment, the results suggest a resolution enhancement effect with a factor of 3.72.

[1]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[2]  A. V. Sergienko,et al.  Dispersion and fidelity in quantum interferometry , 2008 .

[3]  G. R. Jin,et al.  Quantum interferometry with binary-outcome measurements in the presence of phase diffusion , 2014 .

[4]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[5]  Andrew Forbes,et al.  Implementing quantum walks using orbital angular momentum of classical light. , 2012, Physical review letters.

[6]  Andrew G. Glen,et al.  APPL , 2001 .

[7]  J. Dowling Quantum optical metrology – the lowdown on high-N00N states , 2008, 0904.0163.

[8]  L. Cohen,et al.  Super-resolved phase measurements at the shot noise limit by parity measurement. , 2014, Optics express.

[9]  Jihane Mimih,et al.  The parity operator in quantum optical metrology , 2010, 1007.0586.

[10]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[11]  Zach DeVito,et al.  Opt , 2017 .

[12]  S. Goyal,et al.  Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases , 2013, 1402.5810.

[13]  Thomas B. Bahder,et al.  Fidelity of quantum interferometers , 2006 .

[14]  Guang-Can Guo,et al.  Implementation of one-dimensional quantum walks on spin-orbital angular momentum space of photons , 2010, 1002.0638.

[15]  Jonathan P. Dowling,et al.  Nearly optimal measurement schemes in a noisy Mach-Zehnder interferometer with coherent and squeezed vacuum , 2016, EPJ Quantum Technology.

[16]  Augusto Smerzi,et al.  Phase sensitivity of a Mach-Zehnder interferometer , 2006 .

[17]  K. Banaszek,et al.  Photon number resolving detection using time-multiplexing , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[18]  Andrew Forbes,et al.  Engineering two-photon high-dimensional states through quantum interference , 2016, Science Advances.

[19]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[20]  Robert W. Boyd,et al.  Amplification of Angular Rotations using Weak Measurements , 2013, 1312.2981.

[21]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.

[22]  L. Davidovich,et al.  Quantum Metrology for Noisy Systems , 2011 .

[23]  Animesh Datta,et al.  Quantum metrology with imperfect states and detectors , 2010, 1012.0539.

[24]  S. Barnett,et al.  Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body , 2014 .

[25]  Thomas B. Bahder,et al.  Phase estimation with nonunitary interferometers: Information as a metric , 2010, 1012.5293.

[26]  S. Barnett,et al.  Detection of a Spinning Object Using Light’s Orbital Angular Momentum , 2013, Science.

[27]  Yuan Zhao,et al.  Optimal quantum detection strategy for super-resolving angular-rotation measurement , 2017 .

[28]  G. R. Jin,et al.  Fisher information of a squeezed-state interferometer with a finite photon-number resolution , 2017 .

[29]  Matthias D. Lang,et al.  Optimal quantum-enhanced interferometry using a laser power source. , 2013, Physical review letters.

[30]  Pierre Cladé,et al.  Quantized rotation of atoms from photons with orbital angular momentum. , 2006, Physical review letters.

[31]  Miao Yu,et al.  Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state. , 2017, Optics express.

[32]  Olga Minaeva,et al.  Object identification using correlated orbital angular momentum states , 2012, CLEO: 2013.

[33]  Jonathan P. Dowling,et al.  Adaptive phase estimation with two-mode squeezed vacuum and parity measurement , 2016, 1609.04689.

[34]  Ying Li,et al.  Photonic polarization gears for ultra-sensitive angular measurements , 2013, Nature Communications.

[35]  John L. Hall,et al.  Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons , 1998 .

[36]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[37]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[38]  Guang-Can Guo,et al.  Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons , 2007 .