Realization of Fractal/Angle Multiplexing using X-Y Galvano Mirrors and Evaluation of Random Access Performance in Holographic Digital Data Storage

Fractal/angle multiplexing is a crystal using a X-Y Galvano mirror, and the random access concept in fractal/angle multiplexing are discussed in this paper. First, the brief introduction of the designed holographic digital data storage system is presented. Then, the average access time concept for the storage system is newly defined, and the comparison of the average access time between the holographic storage and a conventional optical disk is performed. Second, the basic simulation and experiment to find the X-Y Galvano mirror dynamics are conducted. From this analysis, we find that the average access time in our HDDS which has 6 degree scan angle is about 5 msec. This result is very high performance when it compared with the average access time of a conventional optical disk. Finally, some recording results using fractal/angle multiplexing are presented, then, the relationship between bit error rate and angle mismatch for the each multiplexing are discussed.